Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





High-Throughput Microfluidic Nanoimmunoassay Detects Anti-SARS-CoV-2 Antibodies in Serum or Ultra Low-Volume Blood Samples

By LabMedica International staff writers
Posted on 11 May 2021
A team of researchers has developed a high-throughput microfluidic nanoimmunoassay (NIA) that can detect anti-SARS-CoV-2 antibodies in serum or ultra low-volume blood samples.

The NIA developed by researchers at Icahn School of Medicine at Mount Sinai (New York, NY, USA) can detect anti-SARS-CoV-2 IgG antibodies in 1,024 samples per device. More...
To enable decentralized blood sample collection, the method can detect antibodies in a small drop of blood obtainable by finger pricking, and the blood can be collected and shipped with a simple, low-cost blood glucose test strip. The method achieved a specificity of 100% and a sensitivity of 98% based on the analysis of 289 human serum samples.

As the majority of people infected with SARS-CoV-2 have no or only mild symptoms, many cases aren’t captured by direct testing. However, it is important to establish the true spread of the virus by identifying how many people have been exposed. Detection of anti-SARS-CoV-2-specific antibodies in blood samples can help us understand how the pandemic is evolving over time. Novel technologies are needed to facilitate large-scale detection of SARS-CoV-2 specific antibodies in human blood samples. The novel technologies should be capable of high throughput, low reagent consumption, and low cost per test; achieve high sensitivity and specificity; and be compatible with ultra low-volume whole blood samples in the low or even submicroliter range that can be obtained via a simple finger prick. Such technologies are essential to support seroprevalence studies and vaccine clinical trials, and to monitor quality and duration of immunity.

To eliminate the need for venipuncture, the researchers developed low-cost, ultra low-volume whole blood sampling methods based on two commercial devices and repurposed a blood glucose test strip. The glucose test strip permits the collection, shipment, and analysis of 0.6 μL of whole blood easily obtainable from a simple finger prick. The NIA platform achieves high throughput, high sensitivity, and specificity based on the analysis of 289 human serum samples, and negligible reagent consumption. The researchers further demonstrated the possibility to combine NIA with decentralized and simple approaches to blood sample collection. They expect the technology to be applicable to current and future SARS-CoV-2 related serological studies and to protein biomarker analysis in general.

Related Links:
Icahn School of Medicine at Mount Sinai


Gold Member
Universal Transport Solution
Puritan®UniTranz-RT
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.