We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





Cheap COVID-19 Test Accurately Detects Antibodies Against SARS-CoV-2 from More than 1,000 Blood Samples at Once

By LabMedica International staff writers
Posted on 04 May 2021
A group of scientists has developed a reliable and cheap COVID-19 antibody test that can analyze more than 1,000 samples at once and requires a small drop of blood, such as that from a finger prick.

The highly accurate test developed by researchers from Swiss Federal Institute of Technology Lausanne (EPFL; Lausanne, Switzerland), University of Geneva (UNIGE; Geneva, Switzerland) and Hôpitaux Universitaires de Genève (HUG; Geneva, Switzerland) can analyze hundreds of samples at the same time, using minute quantities of reagents and single drops of blood.

Antibody testing can be a powerful tool for tracking the spread of SARS-CoV2 infections and to evaluate COVID-19 vaccine efficacy in clinical trials, when scientists look at the rise in antibodies after volunteers get a jab. More...
However, antibody tests rely on rather expensive reagents and typically require larger quantities of blood taken with a venous blood draw, which can only be performed by trained healthcare personnel. What’s more, some of the tests on the market are too inaccurate to deliver reliable results.

To resolve this issue, the group of scientists from EPFL, UNIGE and HUG repurposed a previously developed diagnostics platform so that it could be used to perform SARS-CoV-2 antibody tests. The platform, which can analyze up to 1024 samples at once, consists of a complex network of tiny tubes carved into a plastic chip that is about the size of a USB stick. To perform the assay, the researchers feed individual blood samples and test reagents through the channels of this ‘microfluidic’ chip. If antibodies against SARS-CoV-2 are present in a blood sample, a molecule generates a signal that can be detected as a fluorescent glow under a microscope.

Then the team tested blood samples from 155 individuals infected with SARS-CoV-2, the assay detected antibodies against the virus in 98% of cases. The assay is also extremely specific: it never detected antibodies against the virus in samples from people who had not been infected with SARS-CoV-2. Because the microfluidic device is very small, the amounts of blood and reagents used are a fraction of those required for standard COVID-19 antibody tests. And running hundreds of assays on a single platform means that a person can perform more assays in less time, with potential cost savings on human labor.

To eliminate the need for collecting blood from people’s veins, the team assessed whether they could use blood samples obtained from a finger prick. The researchers tested three commercially available devices to perform finger-prick blood tests, including glucose test strips used by people with diabetes to measure their sugar blood levels. The microfluidics-based antibody test could be successfully run on blood samples collected with all three methods, even when the blood was left to dry and stored for about one week at room temperature, or when samples were shipped by regular mail from Geneva to Lausanne. The researchers believe that this technology could make it possible for people to buy a blood sampling kit at a pharmacy or a supermarket, collect their own blood with a simple finger prick, and mail it to a central laboratory that analyzes the blood sample and returns the test results via email or a smart-phone app.

“The coolest thing about our approach is that you can do a lot of tests at once with minimal reagents, and you could even have people collect their own blood samples at home,” said study first author Zoe Swank, a former PhD student in the EPFL’s Laboratory of Biological Network Characterization.

“The approach of collecting blood in a decentralized way by a simple finger prick that can be even done at home, and a sophisticated laboratory-based assay with high diagnostic accuracy makes this test very attractive for large-scale epidemiological studies,” added Isabella Eckerle. “It could even be used for remote geographic regions that lack sufficient laboratory capacity, for example to conduct seroprevalence studies in Sub-Saharan Africa.”

Related Links:
Swiss Federal Institute of Technology Lausanne (EPFL)
University of Geneva (UNIGE)
Hôpitaux Universitaires de Genève (HUG)



Gold Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Portable Electronic Pipette
Mini 96
Gel Cards
DG Gel Cards
New
Gold Member
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.