We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App





New COVID-19 Test to Scan Saliva or Nasal Swabs Using Specialized Probes for Detecting SARS-CoV-2 RNA Sequences

By LabMedica International staff writers
Posted on 25 Feb 2021
Print article
Image: Probes and magnetic beads capture RNA related to SARS-CoV-2 (Photo courtesy of Johns Hopkins Medicine)
Image: Probes and magnetic beads capture RNA related to SARS-CoV-2 (Photo courtesy of Johns Hopkins Medicine)
A newly-developed test has the ability to analyze and detect the many subtle changes that can occur in the SARS-CoV-2 viral genome - so-called variants, such as those first identified in the UK and South Africa.

The technique, being developed by researchers at Johns Hopkins Medicine (Baltimore, MD, USA), scans biological specimens, including saliva or nasal swabs, using specialized DNA probes that sift through a complex “forest” of RNA sequences. The probes can detect specific RNA sequences of viruses and other disease-causing pathogens. The team has named their test “cRASL-seq” (pronounced krazzle-seek) which stands for capture RNA-mediated oligonucleotide annealing selection and ligation with next generation DNA sequencing.

The cRASL-seq test uses DNA sequencing instruments, which are able to analyze hundreds to thousands of samples at a time. Each test can detect not only SARS-CoV-2, but many other infectious organisms, say the scientists. Additionally, cRASL-seq skips a step that is required with most of the currently available tests for SARS-CoV-2. Most tests rely on RNA purification kits, which have often been in short supply, hampering efforts to test large swaths of people. The new test does not rely on such purification kits. Rather, it uses specific probes and magnetic beads to capture target RNA at the same time that the detection probes are binding to the viral RNA. The team is continuing to improve the cRASL-seq technology, expanding the test to detect additional organisms and new SARS-CoV-2 variants as they emerge.

“Detecting and tracking the genetic changes associated with these new strains is an enormous priority,” says Ben Larman, Ph.D., assistant professor of pathology and director of the Laboratory of Precision Immunology within the Institute for Cell Engineering at the Johns Hopkins University School of Medicine. “Sequencing instruments are ubiquitous now. This type of laboratory test could be adopted by centers all over the world to detect emerging pathogens and even resistance elements associated with bacterial and fungal infections.”

Related Links:
Johns Hopkins Medicine

New
Gold Supplier
SARS-CoV-2 Antibody Test
SARS-CoV-2 UTAB FS
New
Gold Supplier
COVID-19 Antigen Test
Rapid COVID-19 Antigen Test
Laboratory Automation Solution
SATLAS-TCA
New
Gold Supplier
SARS-CoV-2, Flu A/B, and RSV Test
SARS-CoV-2 PLUS ELITe MGB Kit

Print article
BIOHIT  Healthcare OY

Channels

Molecular Diagnostics

view channel
Image: The EZ DNA Methylation-Direct Kit (Photo courtesy of Zymo Research)

Leukocyte Epigenomics and Artificial Intelligence Predict Late-Onset Alzheimer’s Disease

Alzheimer’s Disease (AD) is the most common form of age-related dementia, accounting for 60%–80% of such cases. The disorder causes a wide range of significant mental and physical disabilities, with profound... Read more

Industry

view channel
Image: The Novodiag platform combines real-time PCR and microarray capabilities to provide high-level multiplexing (Photo courtesy of Mobidiag Ltd.)

Hologic to Acquire Mobidiag to Strengthen Diagnostic Testing Business

Hologic, Inc. (Marlborough, MA, USA) has signed a definitive agreement to acquire Mobidiag Ltd. (Espoo, Finland) in a USD 795 million transaction that will accelerate the global growth of Mobidiag’s differentiated... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.