We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App





Mount Sinai Developing `End-to-End` Diagnostics Solution for COVID-19

By LabMedica International staff writers
Posted on 04 Apr 2020
Print article
Illustration
Illustration
Researchers and clinicians in microbiology, virology, pathology, molecular science, and immunology at the Icahn School of Medicine at Mount Sinai {(ISMMS) New York, NY, USA) and The Mount Sinai Hospital {(MSH) New York, NY, USA) are working on designing, validating, and implementing an “end-to-end” clinical pathology laboratory solution that will allow for the COVID-19 testing of approximately several hundred people per day in order to rapidly diagnose and help guide the selection of treatment and monitor disease course.

Using a high-throughput, automated molecular assay, The Mount Sinai Hospital Clinical Laboratories are currently testing several hundred patients per day for SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) to identify positive versus negative cases. For patients who test positive for SARS-CoV-2, a quantitative assay designed and implemented by a multidisciplinary Mount Sinai team is capable of measuring whether the patient’s viral load is high or low. The viral load findings will be studied to ascertain whether they assist in managing the disease and aiding in the selection of effective treatments.

Additionally, a team of ISMMS researchers has developed a serological enzyme-linked immunosorbent assay (ELISA) test which measures the presence or absence of antibodies to the virus in people’s blood. The test shows whether a person’s immune system has ever come into contact with the virus (even months ago), thus providing an accurate picture of how many people have been infected; identifying people with new immunity to SARS-CoV-2 who could care for COVID-19 patients at zero or minimal risk; and identifying newly-recovered patients with high antibody levels who can donate their antibody-rich blood, known as convalescent plasma, to potentially save other patients with severe COVID-19.

The test was developed by cloning animal cells to produce copies of the telltale “spike” protein that is present on the surface of SARS-CoV-2. The protein is highly immunogenic, which means that people’s bodies see it and begin making antibodies that can lock onto it. The test involves exposing a sample of blood to bits of the spike protein. If the test “lights up,” it means that person has the antibodies. The sensitive and specific identification of SARS-CoV-2 that ELISA provides will also support screening of health care workers to identify those who have already been exposed and are already immune.

Meanwhile, another team of Mount Sinai researchers are working on a test called the Ella Cytokine Storm Panel to determine when someone infected with COVID-19 is entering a critical point in their disease. This burst of cytokines, called cytokine release syndrome or a “cytokine storm,” contributes to the severity of COVID-19, because the cytokines attack the patient’s organs, which can be fatal in some cases. Mount Sinai clinical laboratories will use the Ella Cytokine Storm Panel in COVID-19 patients who have been admitted to the hospital to monitor them and know, in real time, when they are experiencing cytokine storm. The test results are available in a few hours, and can be repeated throughout the course of care to help guide hospital care and to measure the response to experimental drugs given in clinical trials for COVID-19 patients.

“Some of the best researchers in the world, giants on the frontier of the fields of infectious disease, microbiology, emerging pathogens, and immunology, are here at the Icahn School of Medicine at Mount Sinai and The Mount Sinai Hospital. Since the COVID-19 pandemic began, they have been tracking the data coming out of China and Italy to mount a response that will help diagnose and treat ill patients,” said Dennis S. Charney, MD, Anne and Joel Ehrenkranz Dean, Icahn School of Medicine at Mount Sinai, and President for Academic Affairs, Mount Sinai Health System. “Our health system has fast-tracked funding and approvals for these tests and clinical trials to help patients not just within our own community, but to help people around the globe.”

Related Links:
Icahn School of Medicine at Mount Sinai
The Mount Sinai Hospital


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.