We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Blood Tests Differentiate Myocardial Injury from Infarction

By LabMedica International staff writers
Posted on 03 Oct 2018
Print article
Image: An illustration of early cardiac troponin kinetics in patients after acute myocardial injury including acute myocardial infarction (Photo courtesy of ESC Scientific Document Group).
Image: An illustration of early cardiac troponin kinetics in patients after acute myocardial injury including acute myocardial infarction (Photo courtesy of ESC Scientific Document Group).
Myocardial infarction represents the death of myocardial cells and is characterized by acute myocardial ischemia. Nonischemic myocardial injury by comparison is often associated with other conditions such as renal failure or heart conditions like myocarditis.

A new definition of acute myocardial infarction (MI) that separates it from myocardial injury presents an opportunity for laboratories to fully leverage high-sensitivity cardiac troponin (hs-cTn) assays and provide better guidance to physicians on interpreting cTn results.

An international team of experts led by a specialist at the Aarhus University Hospital (Aarhus, Denmark) have issued the Fourth Universal Definition of MI and also commented on multiple approaches that use early data to predict who will have an acute MI and who will rule out. The document lists these various screening and triage approaches for rapid rule in and rule out, listing some of the pros and cons of each approach.

Biomarkers cTn I and T help define who has acute MI. Myocardial injury reflects an elevated cTn value above the 99th percentile upper reference limit. When cTn values rise and fall due to myocardial ischemia with at least one value exceeding the 99th percentile, then the definition changes to acute MI. The advent of hs-cTn assays underscores the need to create this differentiation between heart attack and injury.

Clinical laboratory scientists in the wake of this new definition could take several measures to help physicians appropriately use and interpret hs-cTn results. Consistent use of the 99th percentile protocol is one such approach. Laboratories sometimes decide that the 99th percentile is something else and use their own cutoffs. This undermines the guidance the Universal Fourth Definition is trying to achieve.

Laboratories also need to work on turnaround time to prevent emergency department overcrowding as when the emergency department is overloaded, all patients suffer. Allan Jaffe, MD, a cardiologist and guideline co-author, said, “It’s hard to suggest approaches to evaluate changing patterns or results or when to consider other possibilities when these are set up as if one is using the assays properly and someone else is using different cutoffs. Then it doesn’t work well. It’s important that labs start to come together and stop deciding that the 99th percentile is something else.” The study was published on August 28, 2018, in the European Heart Journal.

Related Links:
Aarhus University Hospital

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Molecular Diagnostics

view channel
Image: AI analysis of DNA fragmentomes and protein biomarkers noninvasively detects ovarian cancer (Photo courtesy of Adobe Stock)

Blood-Based Machine Learning Assay Noninvasively Detects Ovarian Cancer

Ovarian cancer is one of the most common causes of cancer deaths among women and has a five-year survival rate of around 50%. The disease is particularly lethal because it often doesn't cause symptoms... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Pathology

view channel
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)

Microfluidic Device for Cancer Detection Precisely Separates Tumor Entities

Tumor cell clusters are increasingly recognized as crucial in cancer pathophysiology, with growing evidence of their increased resistance to treatment and higher metastatic potential compared to single tumor cells.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.