We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Micropump Developed for Lab-On-A-Chip Disease Diagnosis

By LabMedica International staff writers
Posted on 18 Sep 2014
A reliable, inexpensive, programmable pump is a crucial feature for lab-on-a-chip devices that could make the diagnosis of many global life-threatening diseases easy and affordable.

An acoustofluidic pump powered by a piezoelectric transducer has been developed that utilizes the acoustic streaming effects generated by the oscillation of tilted sharp-edge structures. More...


Bioengineers and scientists at The Pennsylvania State University, (University Park, PA, USA) developed the pump which works by oscillating a series of thin sharp-edge structures hundreds of micrometers in length that have been constructed onto the sidewall of a microfluidic channel made of polydimethylsiloxane (PDMS), a widely used polymer. A miniaturized piezoelectric transducer, similar to the kind used in medical ultrasound, is the source of the oscillations.

The acoustofluidic pump was made by bonding a single-layer PDMS channel onto a single glass slide and attaching a piezoelectric transducer (Murata Electronics; Smyrna, GA, USA) adjacent to it using a thin layer of epoxy. To demonstrate the pumping behavior, the PDMS channel was designed to be a rectangular recirculating (in a counter-clockwise direction) channel composed of four portions: left channel, right channel, upper channel, and lower channel. The lower channel, referred to as the pumping region, was designed with 20 tilted sharp-edge structures on its sidewall, 10 on each side, while the other three channels were straight channels without any structures. The piezoelectric transducer, activated by amplified sine wave signals from a function generator (Tektronix; Beaverton, OR, USA) and an amplifier was used to acoustically oscillate the sharp-edge structures to generate acoustic streaming effects.

Tony Jun Huang, PhD, an engineering professor and senior author of the study, said, “Our pump is quite unique. It’s reliable and programmable, with a minimum of hardware, yet highly precise. The flow rates can be tuned across a wide range, from nanoliters per minute to microliters per minute. The permanent equipment for the total lab-on-a-chip system, including off-the-shelf electronics, could cost as little as about USD 25.00 to make, and the disposable chip could cost as little as USD 0.10. Although slightly more expensive than paper-based diagnostics, the system is far more versatile and precise, enabling quantitative analysis of, for example, human immunodeficiency virus (HIV), hepatitis, cancer, infectious diseases, cardiovascular diseases.” The study was published on September 4, 2014, in the journal Lab-on-a-chip.

Related Links:

The Pennsylvania State University
Murata Electronics 
Tektronix  



New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Automated Microscope
dIFine
New
Rapid Test Reader
DIA5000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Pathology

view channel
Image: Micrograph showing the distribution of misfolded proteins in myeloma cells (Photo courtesy of Helmholtz Munich)

Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels

Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.