We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Noninvasive Technology Monitors People with Diabetes

By LabMedica International staff writers
Posted on 11 Nov 2013
One of the keys to healthful living with Type 1 and Type 2 diabetes is monitoring blood glucose levels to ensure they remain at stable levels, which can easily be done at home using electronic devices with a drop of blood. More...


A noninvasive technique has been devised that uses the resonance-enhanced pulsed photoacoustic spectroscopy in the ultrasound range using a newly designed, windowless resonator cell that could replace the need for a finger prick.

Scientists at the Johann Wolfgang Goethe-University (Frankfurt, Germany) have devised a novel, noninvasive way to make monitoring easier. They used an infrared laser light applied on top of the skin, to measure sugar levels in the fluid in and under skin cells to read blood sugar levels.

Their new optical approach uses photoacoustic spectroscopy (PAS) to measure glucose by its mid-infrared absorption of light. A painless pulse of laser light applied externally to the skin is absorbed by glucose molecules and creates a measurable sound signature that the team refers to as "the sweet melody of glucose." This signal enables the scientists to detect glucose in skin fluids in seconds.

The data showing the skin cell-glucose levels at one-hundredth of a millimeter beneath the skin is related to blood glucose levels. Previous attempts to use PAS in this manner have been hampered by distortion related to changes of air pressure, temperature, and humidity caused by the contact with living skin. To overcome these constraints, the team devised a design innovation of open, windowless cell architecture. While it is still experimental and would have to be tested and approved by regulatory agencies before becoming commercially available as the team continues to refine it.

The scientists are working in close collaboration with Elté Sensoric (Gelnhausen, Germany) as an industrial partner, and they expect to have a small shoebox-sized device ready in three years, followed by a portable glucometer some years later. The authors concluded that their photoacoustic cell could be applied for measurements of glucose in human epidermis in the fingerprint region. However, it can be used for other solid samples with relevant absorption bands in the middle infrared or even other spectral regions if the laser source covers relevant absorption bands of the sample. The study was published in the August 2013 issue of the Review of Scientific Instruments.

Related Links:

Johann Wolfgang Goethe-University
Elté Sensoric



New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Pipette
Accumax Smart Series
New
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.