Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




MR Spectroscopy May Help Diagnose Aggressiveness of Prostate Cancer

By LabMedica International staff writers
Posted on 15 Feb 2010
Magnetic resonance spectroscopy (MRS), which analyzes the biochemistry instead of the structure of tissues, may soon be able both to pinpoint the precise location of prostate cancer and to determine the tumor's aggressiveness; data that could help guide treatment planning. More...


In the January 27, 2010, online issue of the journal Science Translational Medicine, Massachusetts General Hospital (MGH; Boston, MA, USA) researchers reported how spectroscopic analysis of the biochemical composition of prostate glands accurately identified the location of tissue confirmed to be malignant by conventional pathology.

"Collectively analyzing all the metabolites measurable with a 7-Tesla MR scanner maps out prostate cancer in a way that cannot be achieved by any other current radiological test or by analyzing changes in a single metabolite,” said Leo L. Cheng, Ph.D., of the MGH imaging and pathology departments, the study's senior author. "It detects tumors that cannot be found with other imaging approaches and may give us information that can help determine the best course of treatment.”

Prostate-specific antigen (PSA) screening indicates the potential presence of a tumor, but since benign prostate conditions also affect PSA levels, a surgical biopsy is necessary to detect cancer. Since a tumor may be confined to only a small portion of the prostate, without a way to identify the most suspicious regions, a biopsy sample can miss the malignant area. In 2005, Dr. Cheng and his colleagues found that information provided by MR spectroscopy could differentiate prostate cancer from benign tissue and was superior to conventional pathologic studies in determining a tumor's prognosis. That investigation analyzed tiny tissue samples with an advanced technique utilizing a powerful research magnet.

The current study, building on the 2005 study, utilized a clinical MR scanner to analyze whole prostate glands, an application that could be applied to patient care. Spectroscopic readings were taken across sections of five cancerous prostate glands that had been removed from patients. The scans measured proportions of metabolites--biochemicals produced by various metabolic processes--that had been associated with the presence of cancer using data from the 2005 study. After scanning was complete, the prostate glands were examined by standard histologic techniques, which determine the presence of tumor based on the tissue's appearance. The histologic analysis was performed in a manner that preserved the tumor's location within the prostate.

When the two analyses were compared, five out of seven prostate regions where histologically identified tumor was located also scored high on a spectroscopy-based "malignancy index” The two other tumor regions were near the outer edge of the prostates, where exposure to the air compromised the accuracy of MR spectroscopy findings. For those tumors that did match, higher malignancy index scores also corresponded with larger tumors. Moreover, while the malignancy index was most accurate in identifying stage II tumors--those confined to the prostate and large enough to be felt in a physical exam--its overall accuracy was more than 90%.

Dr. Cheng explained that a prostate tumor's complete metabolomic profile has the potential to give essential information on its biological status. "As we analyze more and more tumors with spectroscopy, we should be able to define profiles that reflect specific clinical and pathological states, achieving a true needle-free, MR biopsy,” he stated. "And once these spectra are measured, they can be recombined to provide profiles reflecting parameters from the tumor's location to, ultimately, its aggressiveness.”

Since the current study was conducted using a whole-body clinical MR scanner, it should be adaptable to scanning patients. Because it used the powerful 7-Tesla magnetic resonance equipment at the MGH's Martinos Center for Biomedical Imaging, Dr. Cheng plans to further evaluate the approach using 3-Tesla equipment, which is available at centers across the United States. He and his colleagues are also working on more powerful software to process the amount of data in a full metabolomic screen in real time. After additional studies confirm their current results, they hope to move into clinical trials within one year or two.

"As long as we can define appropriate metabolomic profiles, this concept could someday be used for any kind of tumor or medical condition,” added Dr. Cheng, an assistant professor of radiology (pathology) at Harvard Medical School (Boston, MA, USA). "Furthermore, this concept can be extended from mapping tissue metabolites to include other disease-sensitive parameters. Eventually we hope to move the field of radiology from analyzing images that show the effects of disease to producing images that reveal the disease process itself.”

Related Links:

Massachusetts General Hospital



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Urine Chemistry Control
Dropper Urine Chemistry Control
ESR Analyzer
TEST1 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.