We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




MR Spectroscopy May Help Diagnose Aggressiveness of Prostate Cancer

By LabMedica International staff writers
Posted on 15 Feb 2010
Magnetic resonance spectroscopy (MRS), which analyzes the biochemistry instead of the structure of tissues, may soon be able both to pinpoint the precise location of prostate cancer and to determine the tumor's aggressiveness; data that could help guide treatment planning. More...


In the January 27, 2010, online issue of the journal Science Translational Medicine, Massachusetts General Hospital (MGH; Boston, MA, USA) researchers reported how spectroscopic analysis of the biochemical composition of prostate glands accurately identified the location of tissue confirmed to be malignant by conventional pathology.

"Collectively analyzing all the metabolites measurable with a 7-Tesla MR scanner maps out prostate cancer in a way that cannot be achieved by any other current radiological test or by analyzing changes in a single metabolite,” said Leo L. Cheng, Ph.D., of the MGH imaging and pathology departments, the study's senior author. "It detects tumors that cannot be found with other imaging approaches and may give us information that can help determine the best course of treatment.”

Prostate-specific antigen (PSA) screening indicates the potential presence of a tumor, but since benign prostate conditions also affect PSA levels, a surgical biopsy is necessary to detect cancer. Since a tumor may be confined to only a small portion of the prostate, without a way to identify the most suspicious regions, a biopsy sample can miss the malignant area. In 2005, Dr. Cheng and his colleagues found that information provided by MR spectroscopy could differentiate prostate cancer from benign tissue and was superior to conventional pathologic studies in determining a tumor's prognosis. That investigation analyzed tiny tissue samples with an advanced technique utilizing a powerful research magnet.

The current study, building on the 2005 study, utilized a clinical MR scanner to analyze whole prostate glands, an application that could be applied to patient care. Spectroscopic readings were taken across sections of five cancerous prostate glands that had been removed from patients. The scans measured proportions of metabolites--biochemicals produced by various metabolic processes--that had been associated with the presence of cancer using data from the 2005 study. After scanning was complete, the prostate glands were examined by standard histologic techniques, which determine the presence of tumor based on the tissue's appearance. The histologic analysis was performed in a manner that preserved the tumor's location within the prostate.

When the two analyses were compared, five out of seven prostate regions where histologically identified tumor was located also scored high on a spectroscopy-based "malignancy index” The two other tumor regions were near the outer edge of the prostates, where exposure to the air compromised the accuracy of MR spectroscopy findings. For those tumors that did match, higher malignancy index scores also corresponded with larger tumors. Moreover, while the malignancy index was most accurate in identifying stage II tumors--those confined to the prostate and large enough to be felt in a physical exam--its overall accuracy was more than 90%.

Dr. Cheng explained that a prostate tumor's complete metabolomic profile has the potential to give essential information on its biological status. "As we analyze more and more tumors with spectroscopy, we should be able to define profiles that reflect specific clinical and pathological states, achieving a true needle-free, MR biopsy,” he stated. "And once these spectra are measured, they can be recombined to provide profiles reflecting parameters from the tumor's location to, ultimately, its aggressiveness.”

Since the current study was conducted using a whole-body clinical MR scanner, it should be adaptable to scanning patients. Because it used the powerful 7-Tesla magnetic resonance equipment at the MGH's Martinos Center for Biomedical Imaging, Dr. Cheng plans to further evaluate the approach using 3-Tesla equipment, which is available at centers across the United States. He and his colleagues are also working on more powerful software to process the amount of data in a full metabolomic screen in real time. After additional studies confirm their current results, they hope to move into clinical trials within one year or two.

"As long as we can define appropriate metabolomic profiles, this concept could someday be used for any kind of tumor or medical condition,” added Dr. Cheng, an assistant professor of radiology (pathology) at Harvard Medical School (Boston, MA, USA). "Furthermore, this concept can be extended from mapping tissue metabolites to include other disease-sensitive parameters. Eventually we hope to move the field of radiology from analyzing images that show the effects of disease to producing images that reveal the disease process itself.”

Related Links:

Massachusetts General Hospital



New
Gold Member
Hematology Analyzer
Medonic M32B
Serological Pipet Controller
PIPETBOY GENIUS
New
Gold Member
Hematology System
Medonic M16C
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.