Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Precise Gas Sensor Could Monitor Pollution and Detect Disease

By LabMedica International staff writers
Posted on 08 Oct 2009
A portable nitric oxide (NO) gas sensor, suitable for large-scale deployment, could be of great value to atmospheric science, pollution control, biology, and medicine.

Researchers at Princeton University (NJ, USA) and Rice University (Houston, TX, USA) developed an ultrasensitive NO detector that uses lasers and sensors that are inexpensive, compact, and highly sensitive. More...
The device, a transportable Faraday rotation spectroscopic system, is based on a tunable external cavity quantum cascade laser. A broadly tunable laser source allows targeting the optimum molecular transition of the NO fundamental band. For an active optical path of 44 cm and a one second lock-in time, constant minimum NO detection limits of 4.3 parts per billion by volume (ppbv) and 0.38 ppbv are obtained by using a thermoelectrically cooled mercury–cadmium–telluride photodetector and liquid nitrogen-cooled indium–antimonide photodetector, respectively. The laser light passes through polarizing filters that block all light unless NO is present.

Preliminary tests of the device were conducted during the 2008 Olympic games held in Beijing (China). The researchers believe their device could find uses ranging from the study and control of car and truck emissions to monitoring human exposure to pollutants in urban and industrial environments. For medical uses, the device is particularly attractive because the results are not corrupted by water vapor, which is present in breath samples. Testing for nitric oxide in a patient's breath, for example, could reveal chronic obstructive pulmonary disease and inflammation. The study was published in the August 4, 2009, issue of the Proceedings of the National Academy of Sciences (PNAS).

"The sensor we have developed is much more accurate and sensitive than existing systems, yet is far more compact and portable,” said coauthor Gerard Wysocki, Ph.D., an assistant professor of electrical engineering at Princeton. "The more nitric oxide, the more light makes it through the filters. There's no background signal to worry about.”

Existing systems to detect NO and other trace gases have a variety of drawbacks. Some, such as carbon monoxide (CO) sensors for homes, are compact and inexpensive, but not very sensitive. High-end systems, such as mass spectrometers and gas chromatographs, are much more sensitive, but are slow, bulky, complicated and expensive, making them impractical for use outside of a laboratory. Intermediate sensitivity optical systems pass a laser beam through a gas sample and detect whether some of the laser light is absorbed by the gas sample; however, the amount of absorption is very small compared to the overall amount of laser light, so the signal is hard to detect. Further, conventional optical sensors tend to be bulky, use large amounts of the sample, and require frequent operator intervention.

Related Links:
Princeton University
Rice University


Gold Member
Hematology Analyzer
Medonic M32B
Collection and Transport System
PurSafe Plus®
Gold Member
Hematology System
Medonic M16C
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The Elecsys Dengue Ag assay is intended for the in vitro qualitative detection of dengue virus NS1 antigen in human serum and plasma (Photo courtesy of Roche)

Automated Test Distinguishes Dengue from Acute Fever-Causing Illnesses In 18 Minutes

Dengue fever remains the most common mosquito-borne viral infection worldwide, posing a major public health challenge as global cases continue to surge. In 2024 alone, more than 14.6 million infections... Read more

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: EBP and EBP plus have received FDA 510(k) clearance and CE-IVDR Certification for use on the BD COR system (Photo courtesy of BD)

High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample

Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.