We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Biomonitoring Device Improves Detection of Toxic Metals

By Labmedica staff writers
Posted on 25 Feb 2008
A new rapid, portable, and inexpensive detection system has been developed that identifies personal exposures to toxic lead and other dangerous heavy metals. More...
The device can provide an accurate blood sample measurement from a simple finger prick, which is particularly important when sampling children.

Accumulation of lead in children can harm the developing brain, causing reduced IQ, learning disabilities, and behavioral problems, among other things. The U.S. Centers for Disease Control and Prevention (CDC; Atlanta, GA, USA) report that about 310,000 U.S. children ages one to five have high levels of lead in their blood. Recent studies also indicate a link between lead exposure and a decline in mental ability many years later. In addition, large numbers of industrial workers are routinely exposed to toxic heavy metals such as cadmium, lead, and mercury, which are known to induce various diseases.

The new analyzer system accurately detects lead and other toxic metals in urine and saliva as well as in blood. The device may be as much as 10 times less expensive than current plasma mass spectrometry (MS) systems, which require samples to be returned to the lab for time-consuming and expensive analysis The new system provides an excellent method of monitoring toxic metal exposures in high-risk populations, such as industrial workers, children, and people living in polluted areas.

Two classes of sensors are used for detecting lead and other heavy metals. The first is based on a flow injection system using a mercury-film electrode to analyze metals in blood, urine, or saliva samples. The second is based on a mercury-free approach of nanostructure materials. It either uses self-assembled monolayers on mesoporous supports (SAMMS) technology--or functionalized magnetic nanoparticles that provide excellent detection sensitivity at a ppb level.

A product of The U.S. Department of Energy's (DOE) Pacific Northwest National Laboratory (PNNL; Richland, WA, USA), the monitoring device is a bit larger than a lunchbox, and is suitable for use in the field. It has plug-and-play features that allow different sensors to be easily exchanged to detect a variety of heavy metal toxins. The entire system is battery-operated, and requires about 50% more power than a typical laptop computer.

Battelle, which operates PNNL for the DOE, filed a patent application in December 2007 for the improved sensor technology used in this next-generation biomonitoring device.


Related Links:
U.S. Centers for Disease Control and Prevention
U.S. Department of Energy's Pacific Northwest National Laboratory
Battelle

New
Gold Member
Automatic CLIA Analyzer
Shine i9000
Portable Electronic Pipette
Mini 96
Rapid Molecular Testing Device
FlashDetect Flash10
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The Elecsys Dengue Ag assay is intended for the in vitro qualitative detection of dengue virus NS1 antigen in human serum and plasma (Photo courtesy of Roche)

Automated Test Distinguishes Dengue from Acute Fever-Causing Illnesses In 18 Minutes

Dengue fever remains the most common mosquito-borne viral infection worldwide, posing a major public health challenge as global cases continue to surge. In 2024 alone, more than 14.6 million infections... Read more

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: EBP and EBP plus have received FDA 510(k) clearance and CE-IVDR Certification for use on the BD COR system (Photo courtesy of BD)

High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample

Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.