We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




Gold Nanoshells Safely Deliver Toxic Chemotherapeutic Drugs

By LabMedica International staff writers
Posted on 21 Nov 2017
A novel method for delivering toxic drugs to tumor cells relies on the use of light-activated gold nanoparticles, which are triggered remotely by laser light to release the drugs inside the cancer cells.

Nanoparticle-based drug delivery systems provide a highly promising approach for localized drug delivery and are an emerging field of interest in cancer treatment. More...
In this regard, investigators at Rice University (Houston, TX, USA) and Northwestern University (Evanston, IL, USA) demonstrated the near-IR (infrared) light-triggered release of the chemotherapeutic drugs docetaxel - from a nanoshell-based DNA host complex - and lapatinib - from nanoshell-based DNA and human serum albumin host complexes.

The investigators reported in the November 6, 2017, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences that, depending upon the drug molecule, the type of host molecule, and the laser illumination method (continuous wave or pulsed laser), in vitro light-triggered release could be achieved with both types of nanoparticle-based complexes. Two breast cancer drugs, docetaxel and HER2-targeted lapatinib, were delivered to MDA-MB-231 and SKBR3 (overexpressing HER2) breast cancer cells and compared with release in noncancerous RAW 264.7 macrophage cells.

Continuous wave laser-induced release of docetaxel from a nanoshell-based DNA host complex caused increased cell death, which also coincided with nonspecific cell death from photothermal heating. Using a femtosecond pulsed laser, lapatinib release from a nanoshell-based human serum albumin protein host complex resulted in increased cancerous cell death while noncancerous control cells were unaffected. Both methods represented localized drug-release strategies that could facilitate high local concentrations of chemotherapy drugs deliverable at a specific treatment site over a specific time window, with the potential for greatly minimized side effects.

"In future studies, we plan to use a Trojan-horse strategy to get the drug-laden nanoshells inside tumors," said senior author Dr. Naomi Halas, professor of biomedical engineering at Rice University. "Macrophages, a type of white blood cell that's been shown to penetrate tumors, will carry the drug-particle complexes into tumors, and once there we use a laser to release the drugs."

"Getting chemotherapeutic drugs to penetrate tumors is very challenging," said contributing author Dr. Susan Clare, research associate professor of surgery at Northwestern University. "Drugs tend to get pushed out of tumors rather than drawn in. To get an effective dose at the tumor, patients often have to take so much of the drug that nausea and other side effects become severe. Our hope is that the combination of macrophages and triggered drug-release will boost the effective dose of drugs within tumors so that patients can take less rather than more."

Related Links:
Rice University
Northwestern University


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
PSA Assay
CanAg PSA EIA
New
PlGF Test
Quidel Triage PlGF Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.