We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel Ferrite Nanoparticles for Hyperthermic Cancer Therapeutics

By LabMedica International staff writers
Posted on 08 Nov 2017
A novel type of nontoxic magnetic nanoparticles shows potential for treating malignant tumor cells through controlled hyperthermia.

For hyperthermia to be used under clinical conditions for cancer therapeutics the temperature regulation needs to be precise and accurately controllable. More...
In the case of the metal nanoparticles used for such activities, a high coercivity is a prerequisite in order to couple more energy in a single heating cycle for efficient and faster differential heating. Coercivity is a measure of the ability of a ferromagnetic material to withstand an external magnetic field without becoming demagnetized.

Ferromagnetic materials with high coercivity are called magnetically hard materials, and are used to make permanent magnets. Materials with low coercivity are said to be magnetically soft. The latter are used in transformer and inductor cores, recording heads, microwave devices, and magnetic shielding.

Chemically stable Co–Zn ferrite nanoparticles have typically not been used in self-regulating hyperthermia temperature applications to date due to their low Curie temperature (the temperature at which certain materials lose their permanent magnetic properties), usually accompanied by a poor coercivity.

Tumor cells can be attacked and killed by hyperthermic nanoparticles without affecting normal tissue if the temperature of the particles can be controlled accurately within a range of 42°C to 45°C. To accomplish this task, investigators at the University of Surrey (United Kingdom) developed novel Cr3+ substituted Co–Zn ferrite nanoparticles, whose Curie temperature was 45.7 °C. Under clinically acceptable magnetic field conditions, the temperature of these nanoparticle suspensions could be self-regulated to 44.0°C.

The investigators reported in the October 7, 2017, issue of the journal Nanoscale that evaluation of the in vitro cytotoxicity of the nanoparticles showed a low toxicity, which indicated that this novel set of magnetic nanoparticles should be appropriate for use in self-regulating hyperthermia therapeutics.

Senior author Dr. Ravi Silva, head of the advanced technology institute at the University of Surrey, said, "This could potentially be a game changer in the way we treat people who have cancer. If we can keep cancer treatment sat at a temperature level high enough to kill the cancer, while low enough to stop harming healthy tissue, it will prevent some of the serious side effects of vital treatment. It is a very exciting development which, once again, shows that the University of Surrey research is at the forefront of nanotechnologies - whether in the field of energy materials or, in this case, healthcare."

Related Links:
University of Surrey


Gold Member
Serological Pipets
INTEGRA Serological Pipets
Collection and Transport System
PurSafe Plus®
New
ESR Analyzer
TEST1 2.0
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Colorectal cancer under the microscope (Photo courtesy of Adobe Stock)

Unique Microbial Fingerprint to Improve Diagnosis of Colorectal Cancer

Colorectal cancer is the fourth most common cancer in the UK and the second deadliest. New research has revealed that it carries a unique microbial fingerprint, which could help doctors better understand... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.