We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Hydrogel-Based Model System Mimics Cellular Signaling Processes

By LabMedica International staff writers
Posted on 07 Nov 2017
Print article
Image: A synthetic tissue releases therapeutic proteins (maroon/yellow) once triggered by metabolites (sandy brown). The metabolites contact with the double-stranded DNA (red/blue) to release the red triggering DNA. The triggering DNA activates the aptamer (cyan)-protein complex to release the protein (Photo courtesy of Xin Zou and Jinping Lai / Pennsylvania State University).
Image: A synthetic tissue releases therapeutic proteins (maroon/yellow) once triggered by metabolites (sandy brown). The metabolites contact with the double-stranded DNA (red/blue) to release the red triggering DNA. The triggering DNA activates the aptamer (cyan)-protein complex to release the protein (Photo courtesy of Xin Zou and Jinping Lai / Pennsylvania State University).
An artificial hydrogel-based model system responds to chemical signals by binding or releasing bound proteins in a manner similar to processes occurring in living cells.

A variety of hydrogels have been synthesized for controlling the release of signaling molecules in applications such as drug delivery and regenerative medicine. However, it remains challenging to synthesize hydrogels with the ability to control the release of signaling molecules sequentially or periodically under physiological conditions as living cells do in response to the variation of metabolism.

To meet this challenge, investigators at Pennsylvania State University (University Park, USA) prepared a novel hydrogel from polyethylene glycol that was infused with two different types of DNA. One was an aptamer, a short strand of DNA that bound the molecules to be released from the hydrogel. The other was a double-stranded helical molecule of DNA designed to react to the metabolic signal and initiate the chemical release process.

The investigators reported in the November 2017 issue of the journal Chemical Science that they had used adenosine as the low molecular weight signaling molecule and platelet-derived growth factor (PDGF) as the signaling protein to be released. The investigators analyzed the adenosine-PDGF hydrogel system and found that without the low molecular weight signal molecule, the amount of signaling protein released by the hydrogel was very small. When adenosine was added, the hydrogel released about 28% percent of the target PDG signaling protein. Other molecules similar to adenosine, such as guanosine and uridine did not cause the release of PDGF from the hydrogel.

"We have only done this recently in a petri dish," said senior author Dr. Yong Wang, professor of biomedical engineering at Pennsylvania State University. "We did tests using smooth muscle cells, but we would of course like to do this in a living animal. Eventually we would like to use this system for controlled drug delivery and other biological actions."

Related Links:
Pennsylvania State University

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total Thyroxine Assay
Total Thyroxine CLIA Kit
New
FOB+Transferrin+Calprotectin+Lactoferrin Test
CerTest FOB+Transferrin+Calprotectin+Lactoferrin Combo Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.