We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Enzyme Mechanism Corrects Cellular DNA Damage

By LabMedica International staff writers
Posted on 16 Oct 2017
Print article
Image: An illustration of a TOP2 DNA-protein cross-link (TOP2cc in magenta) bound to DNA (Photo courtesy of Dr. Scott Williams).
Image: An illustration of a TOP2 DNA-protein cross-link (TOP2cc in magenta) bound to DNA (Photo courtesy of Dr. Scott Williams).
Researchers have identified a mechanism used by cells to correct damage to their DNA caused by chemotherapeutic drugs and some antibiotics.

The enzyme topoisomerase 2 (TOP2) creates DNA double-strand breaks in order to regulate DNA topology and is critical for processes such as replication and transcription. A covalent complex between TOP2 and DNA (TOP2cc), which impedes the activity of the topoisomerase, is an intermediate in the reaction that can be trapped by drugs.

In a recent study, investigators at the [U.S.] National Institutes of Health/National Institute of Environmental Health Sciences (Bethesda, MD, USA) reported in the September 29, 2017, online edition of the journal Science that the SUMO ligase enzyme ZATT promoted the resolution of TOP2cc by means of another enzyme, tyrosyl-DNA phosphoesterase 2 (TDP2), both by enhancing recruitment of TDP2 to SUMOylated TOP2 and by enhancing the hydrolase activity of TDP2.

SUMO (Small Ubiquitin-like Modifier) proteins are a family of small proteins that are covalently attached to and detached from other proteins in cells to modify their function. SUMOylation is a post-translational modification involved in various cellular processes, such as nuclear-cytosolic transport, transcriptional regulation, apoptosis, protein stability, response to stress, and progression through the cell cycle. SUMO proteins are similar to ubiquitin, and SUMOylation is directed by an enzymatic cascade analogous to that involved in ubiquitination. In contrast to ubiquitin, SUMO is not used to tag proteins for degradation.

"In this study, we discovered a new molecular disarmament apparatus for these cell-killing bombs (TOP2cc)," said senior author Dr. Scott Williams, deputy chief of the genome integrity and structural biology laboratory at the National Institute of Environmental Health Sciences. "ZATT is like a bomb sniffing dog, so when it locates its target, it sounds an alarm to mobilize the recruitment of TDP2, which cuts the red wire to disarm these threats."

Related Links:
[U.S.] National Institutes of Health/National Institute of Environmental Health Sciences

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Fixed Speed Tube Rocker
GTR-FS
New
Benchtop Cooler
PCR-Cooler & PCR-Rack

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.