We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Depressing Stress Signaling Increases Immune Activity

By LabMedica International staff writers
Posted on 12 Sep 2017
Print article
Image: A ribbon model of the beta-2 adrenergic receptor (Photo courtesy of Wikimedia Commons).
Image: A ribbon model of the beta-2 adrenergic receptor (Photo courtesy of Wikimedia Commons).
Cancer researchers evaluating the immune status of the tumor microenvironment found that CD8+ T-cell frequency and functional orientation were regulated by beta-2-adrenergic receptor (beta-AR) signaling and suggested using clinically available beta-blockers in patients to improve responses to immunotherapy.

Anticancer therapies designed to block “checkpoints” within the immune system do not work for all patients, and their efficacy in controlling tumors is often short-lived. To better understand these phenomena and to improve the performance of check point inhibitors, investigators at Roswell Park Cancer Institute (Buffalo, NY, USA) used three strategies: physiologic (manipulation of ambient thermal environment), pharmacologic (beta-blockers), and genetic (beta-2-adrenergic receptor knockout mice) to reduce adrenergic stress signaling in two widely studied preclinical mouse tumor models.

They reported in the August 17, 2017, online edition of the journal Cancer Research that reducing beta-AR signaling facilitated conversion of tumors to an immunologically active tumor microenvironment. This immunologically enriched microenvironment displayed increased frequency of CD8+ T-cells with an effector phenotype and decreased expression of PD-1, in addition to an elevated effector CD8+ T-cell to CD4+ regulatory T-cell ratio. Moreover, this conversion significantly increased the efficacy of anti-PD-1 checkpoint blockade.

In short, manipulating beta-adrenergic receptor signaling to regulate the immune status of the tumor microenvironment supported the strategic use of clinically available beta-blockers in patients to improve responses to immunotherapy.

“Our bodies respond to certain types of stress - such as fear and anxiety, heat, cold, pain, depression, and even attack by cancer cells - in the same way. We jump into "fight or flight" mode, and the sympathetic nervous system dials up the release of norepinephrine,” said senior author Dr. Elizabeth Repasky, professor of immunology at Roswell Park Cancer Institute. “For reasons that we do not entirely understand yet, prolonged exposure to these stressors often makes our immune cells much less effective. But we demonstrate here that beta blockers, by reducing adrenergic signaling, allow anti-tumor immune cells to become much stronger, and give immunotherapies, and in particular checkpoint inhibitors, a much better chance to work.”

Related Links:
Roswell Park Cancer Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.