We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Decellurization Technique Enhances Study of ECM Structure

By LabMedica International staff writers
Posted on 12 Jul 2017
A new method has been developed that allows complete removal of cells from within organs of the body to enhance the study of extracellular membrane (ECM) composition and structure.

ECM is a master regulator of cellular phenotype and behavior. More...
It has a crucial role in both normal tissue homeostasis and disease pathology. Differing mechanical properties in ECM exert effects on both cell behavior and gene expression. ECM can exist in varying degrees of stiffness and elasticity, from soft brain tissues to hard bone tissues. The elasticity of the ECM can differ by several orders of magnitude. This property is primarily dependent on collagen and elastin concentration, and it has recently been shown to play an influential role in regulating numerous cell functions.

Investigators at the University of Copenhagen (Denmark) reported in the June 12, 2017, online edition of the journal Nature Medicine that they had developed a fast and efficient approach to enhance the study of ECM composition and structure. Termed in situ decellularization of tissues (ISDoT), it allows whole organs to be decellularized, leaving native ECM architecture intact. These three-dimensional decellularized tissues can be studied using high-resolution fluorescence and second harmonic imaging, and can be used for quantitative proteomic interrogation of the ECM.

The investigators performed high-resolution sub-micron imaging of matrix topography in normal tissue and over the course of primary tumor development and progression to metastasis in mice. Results of these studies provided the first detailed imaging of the metastatic niche. Furthermore, these data showed that cancer-driven ECM remodeling was organ specific, and that it was accompanied by comprehensive changes in ECM composition and topological structure. The investigators also described differing patterns of basement-membrane organization surrounding different types of blood vessels in healthy and diseased tissues.

The investigators stated that their method was superior to other methods tested in its ability to preserve the structural integrity of the ECM, facilitate high-resolution imaging, and quantitatively detect ECM proteins.

"We have developed a technique to obtain intact organ scaffolds and to image them using microscopes. We are the first to image the structures of primary and metastatic tumors as well as healthy organs in this way," said senior author Dr. Janine Erler, professor in the biotech research and innovation center at the University of Copenhagen. "We are now re-introducing cells into our extracellular matrix scaffolds, bringing them back to life, to study how tumors form and how cancer progresses. This is extremely exciting and offers a unique opportunity to study how cells behave in their native environment."

Related Links:
University of Copenhagen


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The LIAISON NES Group A Strep assay is intended for use on the LIAISON NES POC molecular diagnostics system (Photo courtesy of Diasorin)

Group A Strep Molecular Test Delivers Definitive Results at POC in 15 Minutes

Strep throat is a bacterial infection caused by Group A Streptococcus (GAS). It is a leading bacterial cause of acute pharyngitis, particularly in children and adolescents, and one of the most common reasons... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Pathology

view channel
Image: Sophie Paczesny, M.D., Ph.D and her team have made BIOPREVENT freely available for researchers and clinician to test and learn from (Photo courtesy of Cliff Rhodes)

AI Tool Uses Blood Biomarkers to Predict Transplant Complications Before Symptoms Appear

Stem cell and bone marrow transplants can be lifesaving, but serious complications may arise months after patients leave the hospital. One of the most dangerous is chronic graft-versus-host disease, in... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image

QuidelOrtho Collaborates with Lifotronic to Expand Global Immunoassay Portfolio

QuidelOrtho (San Diego, CA, USA) has entered a long-term strategic supply agreement with Lifotronic Technology (Shenzhen, China) to expand its global immunoassay portfolio and accelerate customer access... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.