We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Time-Release Approach for Treating Type II Diabetes

By LabMedica International staff writers
Posted on 13 Jun 2017
Print article
Image: A glucose-controlling drug (blue) is shown completely dissolving after 24 hours in the body of a mouse in the top two photos. In the bottom two images, a newly optimized version of a diabetes treatment forms a \"depot\" for controlled release that persists more than 24 hours (Photo courtesy of Dr. Ashutosh Chilkoti, Duke University).
Image: A glucose-controlling drug (blue) is shown completely dissolving after 24 hours in the body of a mouse in the top two photos. In the bottom two images, a newly optimized version of a diabetes treatment forms a \"depot\" for controlled release that persists more than 24 hours (Photo courtesy of Dr. Ashutosh Chilkoti, Duke University).
A novel approach to treating type II diabetes is based on a timed-release suspension of glucagon-like peptide-1 (GLP1) embedded in a thermosensitive elastin-like polypeptide complex.

Stimulation of the GLP1 receptor (GLP1R) is a useful treatment strategy for type II diabetes. GLP1R is known to be expressed in pancreatic beta cells. Activated GLP1R stimulates the adenylyl cyclase pathway, which results in increased insulin synthesis and release of insulin. Consequently, GLP1R has been a target for developing drugs usually referred to as GLP1R agonists to treat diabetes. GLP1R is also expressed in the brain where it is involved in the control of appetite. However, the native ligand for the GLP1 receptor has a short half-life owing to enzymatic inactivation and rapid clearance.

In order to increase the half-life of GLP1, investigators at Duke University (Durham, NC, USA) developed a method that embedded GLP1 in a heat-sensitive elastin-like polypeptide (ELP) in a solution that could be injected into the skin through a standard needle. Once injected, the solution reacted with body heat to form a biodegradable gel-like deposit that slowly released the drug as it dissolved.

The investigators worked with mouse and monkey diabetes models. They reported in the June 5, 2017, online edition of the journal Nature Biomedical Engineering that a subcutaneous depot formed after a single injection of GLP1 fused to a thermosensitive elastin-like polypeptide and displayed zero-order release kinetics and circulation times of up to 10 days in mice and 17 days in monkeys. The optimized pharmacokinetics led to 10 days of glycemic control in three different mouse models of diabetes, as well as the reduction of glycosylated hemoglobin levels and weight gain in obese mice treated once weekly for eight weeks.

"Although we have pursued this method in the past, a researcher in my lab systematically worked to vary the design of the delivery biopolymer at the molecular level and found a sweet spot that maximized the duration of the drug's delivery from a single injection," said senior author Dr. Ashutosh Chilkoti, professor of biomedical engineering at Duke University. "By doing so, we managed to triple the duration of this short-acting drug for type II diabetes, outperforming other competing designs."

Related Links:
Duke University

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Chagas Disease Test
LIAISON Chagas
New
Epstein-Barr Virus Test
Mononucleosis Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: Karius Focus BAL is designed to quickly identify the etiology of lung infections and improve diagnostic yield over standard of care testing (Photo courtesy of Karius)

Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections

Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.