We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Kinase Domain Mutation Causes Protein Malfunction and Tumor Development

By LabMedica International staff writers
Posted on 29 Aug 2016
A team of chemical biologists has generated the first molecular map of the protein doublecortin kinase like domain 1 (DCLK1), a factor linked to more than 10% of gastric cancers that has also been found in kidney, rectal, and pancreatic cancers.

Doublecortin (DCX) is a microtubule-associated protein required for neuronal migration to the cerebral cortex. More...
DCLK1 consists of an N-terminus that is 65% similar to DCX throughout the entire length of DCX, but also contains an additional 360 amino acid C-terminal domain encoding a protein kinase. The homology to DCX suggested that DCLK1 may regulate microtubules, as well as mediate a phosphorylation-dependent signal transduction pathway.

Purified DCLK1 associates with microtubules and stimulates polymerization of purified tubulin and the formation of aster-like microtubule structures. Overexpressed DCLK1 leads to striking microtubule bundling in cell lines and cultured primary neural cells. DCLK1 also encodes a functional kinase capable of phosphorylating myelin basic protein and itself. However, elimination of the kinase activity of DCLK1 has no detectable effect on its microtubule polymerization activity. While DCLK1 is among the 15 most common putative driver genes for gastric cancers and is highly mutated across various other human cancers, how DCLK1 dysfunction leads to tumor development is not well understood.

Investigators at the Walter and Eliza Hall Institute (Parkville, Australia) worked with the Australian Synchrotron to generate the crystal structure of the DCLK1 kinase domain at 1.7 angstrom resolution. This structure, which was published in the August 18, 2016, online edition of the journal Structure, provided detailed insight into the ATP-binding site that is expected to serve as a framework for future drug design. This structure also allowed for the mapping of cancer-causing mutations within the kinase domain, suggesting that a loss of kinase function may contribute to tumor development.

Senior author Dr. Isabelle Lucet, chemical biology laboratory head at the Walter and Eliza Hall Institute, said, "We can think of the kinase domain of DCLK1 being an inbuilt controlling unit for the protein. The kinase domain sits separately from the part of the protein that assembles microtubules, and can switch microtubule assembly on or off as needed. The complexity of having these two different components in one protein has, until now, hindered our understanding of how DCLK1 functions normally and what goes wrong in cancer. We decided to focus on just the regulatory kinase domain of DCLK1, because we knew that this is the part of DCLK1 that is often altered in cancers."

Related Links:
Walter and Eliza Hall Institute



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Portable Electronic Pipette
Mini 96
New
Gel Cards
DG Gel Cards
New
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.