We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Histone Mutation Sufficient to Trigger Cancer Development

By LabMedica International staff writers
Posted on 01 Jun 2016
A missense mutation in a histone protein has been shown to be able to prompt the development of cancer cells without any change to the DNA of the cells that are involved.

Histones are highly alkaline proteins found in eukaryotic cell nuclei that package and order the DNA into structural units called nucleosomes. More...
They are the chief protein components of chromatin, acting as spools around which DNA winds, and playing a role in gene regulation. This enables the compaction necessary to fit the large genomes of eukaryotes inside cell nuclei: the compacted molecule is 40,000 times shorter than an unpacked molecule.

Missense mutations (that change one amino acid for another) in the histone H3 can produce a so-called oncohistone and are found in a number of pediatric cancers. For example, the lysine-36–to-methionine (K36M) mutation is seen in almost all chondroblastomas, benign tumors that arise in cartilage typically during adolescence.

Investigators at the Rockefeller University (New York, NY, USA) inserted the H3 histone mutation into mouse mesenchymal progenitor cells (MPCs), which generate cartilage, bone, and fat and then injected the mutant cells into living mice. The animals developed the tumors rich in MPCs, known as an undifferentiated sarcoma.

The investigators reported in the May 13, 2016, issue of the journal Science that K36M mutation impaired the differentiation of mesenchymal progenitor cells and generated undifferentiated sarcoma in vivo. K36M mutant nucleosomes inhibited the enzymatic activities of several H3K36 methyltransferases. Depleting H3K36 methyltransferases, or expressing an H3K36I mutant that similarly inhibited H3K36 methylation, was sufficient to phenocopy the H3K36M mutation.

The mutation inhibited enzymes that normally tag the histone with methyl groups, allowing genes to be expressed normally. In response to this lack of modification, another part of the histone becomes over-modified (tagged with too many methyl groups). "This leads to an overall resetting of the landscape of chromatin, the complex of DNA and its associated factors, including histones," said senior author Dr. Peter Lewis, now assistant professor of biomolecular chemistry at the University of Wisconsin (Madison, USA). "This resetting is what locks the cell into its proliferative state."

"Once researchers understand more about these pathways," said Dr. Lewis, "they can consider ways of blocking them with drugs, particularly in tumors such as MPC-rich sarcomas--which, unlike chondroblastoma, can be deadly. In fact, drugs that block the pathways may already exist and may even be in use for other types of cancers."

Related Links:
Rockefeller University
University of Wisconsin

Gold Member
Troponin T QC
Troponin T Quality Control
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Celiac Disease Test
Anti-Gliadin IgG ELISA
New
Host Response Immunoassay Test
MeMed BV
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.