We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Pathway Implicated in Development of Eosinophilic Esophagitis

By LabMedica International staff writers
Posted on 26 Apr 2016
Scientists have identified a protein whose dysfunction appears to be involved in causing the tissue damage in patients with eosinophilic esophagitis (EoE). More...
The finding may lead to improved pathology analysis, diagnostics, and specific drug therapies for patients.

In this disease eosinophils (type of white blood cells) accumulate in the esophagus, often causing difficult painful swallowing, nausea, vomiting, and poor growth. Researchers from the Cincinnati Children’s Hospital Medical Center (Cincinnati, OH, USA), led by Prof. Marc E. Rothenberg, had previously identified genetic differences associated with EoE patients that led them to focus on the CAPN14 gene, encoding calpain-14. In this new study, the team collected esophageal biopsies from EoE patients to investigate a possible role for calpain-14 in disease development. They exposed cells from the tissue biopsies to interleukin- 13 (IL-13) in order to mimic signals that may contribute to EoE development.

IL-13 caused the cells to markedly (>100x) increase production of calpain- 14, which was found to regulate the protein desmoglein-1 (DSG1), a critical component of esophagus tissue. These molecular changes may be an early step in a process that leads to inflammation and scarring in the esophagus. Furthermore, epithelial cells overexpressing CAPN14 displayed impaired architecture, characterized by acantholysis, epidermal clefting, and epidermolysis. CAPN14 overexpression impaired epithelial barrier function.

These and addition results from the study demonstrate a molecular cellular pathway that contributes to T-helper type-2 responses in mucosal epithelium. The findings suggest that controlling the production or activity of calpain-14 may prevent development of EoE, making calpain- 14 a potentially valuable drug target.

The study, by Davis BP et al., was published April 7, 2016, in the American Society for Clinical Investigation’s journal JCI Insight.

Related Links:
Cincinnati Children’s Hospital Medical Center


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hematology Analyzer
Medonic M32B
Gold Member
Hybrid Pipette
SWITCH
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: LiDia-SEQ aims to deliver near-patient NGS testing capabilities to hospitals, labs and clinics (Photo courtesy of DNAe)

World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device

Rapid point-of-need diagnostics are of critical need, especially in the areas of infectious disease and cancer testing and monitoring. Now, a direct-from-specimen platform that performs genomic analysis... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.