Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




Molecular Mechanism Regulating Regeneration of Spinal Nerves Identified

By LabMedica International staff writers
Posted on 29 Mar 2016
The protein neuregulin-1 was found to regulate the repair mechanism that attempts to restore lost myelin following spinal cord injury.

Following traumatic spinal cord injury, acute demyelination of spinal axons is followed by a period of spontaneous remyelination. More...
However, this endogenous repair response is incomplete and may account for the chronic loss of function demonstrated by surviving axons. Spontaneous remyelination is largely mediated by Schwann cells, where demyelinated central axons, particularly in the dorsal columns, become associated with peripheral myelin. The molecular control mechanism, functional role, and origin of these central remyelinating Schwann cells are currently unknown.

The growth factor neuregulin-1 (Nrg1, encoded by the NRG1 gene) is a key signaling factor controlling myelination in the peripheral nervous system, via signaling through ErbB tyrosine kinase receptors. The neuregulins are a family of four structurally related proteins that are part of the EGF (epidermal growth factor) family of proteins, which have been shown to have diverse functions in the development of the nervous system.

Investigators at King's College London (United Kingdom) and the University of Oxford (United Kingdom) examined whether Nrg1 was required for Schwann cell-mediated remyelination of central dorsal column axons and whether removal of Nrg1 would influence the degree of spontaneous remyelination and functional recovery following spinal cord injury.

They reported in the March 17, 2016, online edition of the journal Brain that Nrg1 signaling mediated an endogenous regenerative event in which Schwann cells remyelinated denuded central axons after traumatic spinal cord injury and that Nrg1 was an important mediator of spontaneous functional repair after spinal cord injury. In mice lacking the NRG1 gene, spontaneous myelin repair was completely prevented and spinal nerve fibers remained demyelinated. Furthermore, mice without NRG1 showed worse outcomes after spinal cord injury compared to mice with the gene intact, particularly in walking, balance, and coordinated movements.

Senior author Dr. Elizabeth Bradbury, professor of regenerative medicine and neuroplasticity at King's College London, said, "Spinal cord injury could happen to anyone, at any time. In an instant your life could change and you could lose all feeling and function below the level of the injury. Existing treatments are largely ineffective, so there is a pressing need for new regenerative therapies to repair tissue damage and restore function after spinal cord injury."

"These new findings advance our understanding of the molecular mechanisms which may orchestrate the body's remarkable capacity for natural repair," said Dr. Bradbury.

"By enhancing this spontaneous response, we may be able to significantly improve spinal cord function after injury. Our research also has wider implications for other disorders of the central nervous system which share this demyelinating pathology, such as multiple sclerosis."

Related Links:

King's College London
University of Oxford



New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Celiac Disease Test
Anti-Gliadin IgG ELISA
New
Automated Microscope
dIFine
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.