We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Biochemists Present First 3D Crystal Structure of a Nonribosomal Peptide Synthetase

By LabMedica International staff writers
Posted on 03 Feb 2016
A team of Canadian biochemists has presented a series of three-dimensional (3D) X-ray crystallography structures of the initiation module of the antibiotic-producing nonribosomal peptide synthetase (NRPS) megaenzyme, linear gramicidin synthetase.

NRPSs are very large proteins that produce small peptide molecules with wide-ranging biological activities. More...
Each nonribosomal peptide synthetase can synthesize only one type of peptide. Nonribosomal peptides often have cyclic and/or branched structures, can contain non-proteinogenic amino acids including D-amino acids, carry modifications like N-methyl and N-formyl groups, or are glycosylated, acylated, halogenated, or hydroxylated. Cyclization of amino acids against the peptide "backbone" is often performed, resulting in oxazolines and thiazolines; these can be further oxidized or reduced. On occasion, dehydration is performed on serines, resulting in dehydroalanine. This is just a sampling of the various manipulations and variations that nonribosomal peptides can perform.

In the January 14, 2016, issue of the journal Nature, investigators at McGill University (Montreal, QC, Canada) presented a series of three-dimensional X-ray crystal structures of the initiation module of the antibiotic-producing NRPS, linear gramicidin synthetase. This module included the specialized tailoring formylation domain, and states were captured that represented every major step of the assembly-line synthesis in the initiation module.

The investigators reported that the transitions between conformations were large in scale, with both the peptidyl carrier protein domain and the adenylation subdomain undergoing huge movements to transport substrate between distal active sites. The structures highlighted the great versatility of NRPSs, as small domains repurposed and recycled their limited interfaces to interact with their various binding partners.

"This is the most complete view we have ever had of these enzymes in action," said senior author Dr. Martin Schmeing, professor of biochemistry at McGill University. "Even though megaenzymes are the second-biggest proteins known to man, they are still very small molecules and they are very mobile, so it is difficult to see them at work."

Related Links:

McGill University



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The new analysis of blood samples links specific protein patterns to five- and ten-year mortality risk (Photo courtesy of Adobe Stock)

Blood Protein Profiles Predict Mortality Risk for Earlier Medical Intervention

Elevated levels of specific proteins in the blood can signal increased risk of mortality, according to new evidence showing that five proteins involved in cancer, inflammation, and cell regulation strongly... Read more

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.