We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Protein Identified That Boosts Brain Tumor Resistance to Chemotherapy

By LabMedica International staff writers
Posted on 26 Jan 2016
Cancer researchers have linked development of resistance to the anticancer drug temozolomide by glioblastoma multiforme (GBM) brain cancer cells to the activity of the RhoG-specific guanine nucleotide exchange factor protein SGEF.

GBM is the highest grade and most common form of primary adult brain tumors. More...
Despite surgical removal followed by concomitant radiation and chemotherapy with the alkylating agent temozolomide (TMZ), GBM tumors develop treatment resistance and ultimately recur. Impaired response to treatment occurs rapidly, conferring a median survival of just fifteen months. Thus, researchers are seeking to identify the genetic and signaling mechanisms that promote tumor resistance in order to develop targeted therapies to combat this refractory disease.

The therapeutic benefit of TMZ depends on its ability to alkylate/methylate DNA, which most often occurs at the N-7 or O-6 positions of guanine residues. This methylation damages the DNA and triggers the death of tumor cells. However, some tumor cells are able to repair this type of DNA damage, and therefore diminish the therapeutic efficacy of TMZ, by expressing the protein O6-alkylguanine DNA alkyltransferase (AGT) encoded in humans by the O-6-methylguanine-DNA methyltransferase (MGMT) gene. In some tumors, epigenetic silencing of the MGMT gene prevents the synthesis of this enzyme, and as a consequence such tumors are more sensitive to killing by TMZ. Conversely, the presence of AGT protein in brain tumors predicts poor response to TMZ and these patients receive little benefit from chemotherapy with this drug.

Previous studies have shown that SGEF (Src homology 3 domain-containing guanine nucleotide exchange factor) was overexpressed in GBM tumors and played a role in promoting TWEAK-Fn14–mediated glioma invasion. TWEAK is a multifunctional cytokine that controls many cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. TWEAK acts by binding to Fn14, a highly inducible cell-surface receptor that is linked to several intracellular signaling pathways, including the nuclear factor-kappaB (NF-kappaB) pathway. The TWEAK–Fn14 axis normally regulates various physiological processes; in particular it seems to play an important, beneficial role in tissue repair following acute injury. Furthermore, recent studies have indicated that TWEAK–Fn14 axis signaling may contribute to cancer, chronic autoimmune diseases, and acute ischemic stroke.

Investigators at The Translational Genomics Research Institute (Phoenix, AZ, USA) reported in the January 13, 2016, online edition of the journal Molecular Cancer Research that SGEF expression was upregulated by TWEAK-Fn14 signaling via NF-kappaB activity while shRNA (short hairpin RNA)-mediated reduction of SGEF expression sensitized glioma cells to temozolomide-induced apoptosis and suppressed colony formation following temozolomide treatment.

Nuclear SGEF was activated following temozolomide exposure and formed complexes with the DNA damage repair protein BRCA1 (breast cancer 1), which enabled tumor cells to rapidly repair the damaged DNA that otherwise would lead to cell death. In contrast, BRCA1 phosphorylation in response to temozolomide treatment was hindered by inhibition of SGEF.

"We need to identify the genetic and cellular-pathway signaling mechanisms that make brain tumors resistant to treatment," said senior author Dr. Nhan Tran, head of the central nervous system tumor research laboratory at The Translational Genomics Research Institute. "And the role of SGEF in promoting chemotherapeutic resistance highlights this previously unappreciated protein. Importantly, this also suggests that SGEF could be a new candidate for development of targeted therapeutics."

Related Links:

The Translational Genomics Research Institute



New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Collection and Transport System
PurSafe Plus®
Clinical Chemistry System
P780
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Pathology

view channel
Image: The new system allows surgeons to identify genotyping of brain tumors and determine optimal resection margins during surgery (Photo courtesy of Nagoya University)

New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes

Determining the genetic profile of brain tumors during surgery is crucial for improving patient outcomes, but conventional analysis methods can take up to two days, delaying critical decisions.... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.