We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Cytoplasmic Polyadenylation Element-Binding Proteins Regulate Pathologic Angiogenesis in Chronic Liver Diseas

By LabMedica International staff writers
Posted on 03 Jan 2016
Print article
Image: Pathological blood vessels (white circles) have abundant CPEB4 expression in cirrhotic tissue (Photo courtesy of the Institute for Research in Biomedicine Barcelona).
Image: Pathological blood vessels (white circles) have abundant CPEB4 expression in cirrhotic tissue (Photo courtesy of the Institute for Research in Biomedicine Barcelona).
A team of molecular biologists has identified a pathway that regulates the pathologic expression of VEGF (vascular endothelial growth factor), the main effector protein in the development of blood vessels, and angiogenesis in chronic liver disease.

VEGF regulates angiogenesis, yet therapeutic strategies to disrupt VEGF signaling can interfere with necessary physiologic angiogenesis. In a search for ways to inhibit pathologic production or activities of VEGF without affecting its normal production or functions, investigators at the Institute for Research in Biomedicine (Barcelona, Spain), studied the post-transcriptional regulation of VEGF by the cytoplasmic polyadenylation element-binding proteins CPEB1 and CPEB4 during development of portal hypertension and liver disease.

The investigators worked with liver biopsies from patients with HCV-associated cirrhosis or liver tissues removed during transplantation. They also performed experiments with male Sprague-Dawley rats and CPEB-deficient mice (C57BL6 or mixed C57BL6/129 background) and their wild-type littermates. Secondary biliary cirrhosis was induced in rats by bile duct ligation and portal hypertension was induced by partial portal vein ligation. Liver and mesenteric tissues were collected and analyzed in angiogenesis and reverse transcription PCR, and by a number of immunological tests and confocal microscopy assays. CPEB was knocked down with small interfering RNAs (siRNAs) in H5V endothelial cells, and translation of luciferase reporters constructs was assessed.

Results published in the November 25, 2015, online edition of the journal Gastroenterology revealed increased levels of CPEB1 and CPEB4 in cirrhotic liver tissues from patients, compared with control tissue, as well as in livers and mesenteries of rats and mice with cirrhosis or/and portal hypertension. Mice with liver-specific knockdown of CPEB1 or CPEB4 did not overexpress VEGF or have signs of mesenteric neovascularization, and developed less-severe forms of portal hypertension following portal vein ligation.

Regulation of CPEB4 by CPEB1 and the CPEB4 auto-amplification loop induced pathologic angiogenesis. Strategies to block the activities of CPEBs might be developed to treat chronic liver and other angiogenesis-dependent diseases.

"All current drugs that aim to prevent neovascularization are based on inhibiting VEGF or VEGF receptors, but the problem is that indiscriminate attack of this protein impairs the normal development of blood vessels, thus causing unbearable adverse effects," said Dr. Raul Méndez, research professor at the Institute for Research in Biomedicine. "The best about the study is that we demonstrate that the development of pathological blood vessels can be stopped by interfering with CPEB4 proteins while positive vascularization remains intact. The experiments in cells in vitro, in animal models, and in samples taken from patients with cirrhosis have revealed the molecular mechanisms through which the increase in CPEB4 favors the overexpression of VEGF in cirrhosis."

Related Links:

Institute for Research in Biomedicine 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.