Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




New Version of Old Drug Shows Promise for Treating Drug-Resistant Tuberculosis

By LabMedica International staff writers
Posted on 15 Jun 2015
A team of molecular microbiologists has determined the mechanism by which the Streptomyces-derived antibiotic griselimycin blocks the growth of Mycobacterium tuberculosis, the bacterium responsible for causing more than eight million cases of tuberculosis annually on a worldwide basis.

Investigators from the Helmholtz Center for Infection Research (Braunschweig, Germany), other German research institutes, and the biomedical company Sanofi (Paris, France) were interested in exploring the possibility of using griselimycin or one of its derivatives for treating drug resistant tuberculosis; while this drug had been evaluated in the 1960's it had suffered in comparison to others. More...
However, M. tuberculosis has developed resistance to most of those other drugs, and development of replacements is a top priority.

The investigators reported in the June 5, 2015, issue of the journal Science that a variant of griselimycinm, cyclohexylgriselimycin, was particularly effective against M. tuberculosis, in cells and when administered orally to an animal model.

The effectiveness of cyclohexylgriselimycin was found to be due to the drug's inhibition of the M. tuberculosis DNA polymerase sliding clamp DnaN. A DNA clamp, also known as a sliding clamp, is a protein fold that serves as a processivity-promoting factor in DNA replication. Processivity is an enzyme's ability to catalyze consecutive reactions without releasing its substrate. As a critical component of the DNA polymerase III holoenzyme, the clamp protein binds DNA polymerase and prevents this enzyme from dissociating from the template DNA strand. The clamp-polymerase protein–protein interactions are stronger and more specific than the direct interactions between the polymerase and the template DNA strand; because one of the rate-limiting steps in the DNA synthesis reaction is the association of the polymerase with the DNA template, the presence of the sliding clamp dramatically increases the number of nucleotides that the polymerase can add to the growing strand per association event. The presence of the DNA clamp can increase the rate of DNA synthesis up to 1,000-fold compared with a nonprocessive polymerase.

As inhibiting the DNA clamp is a completely different mechanisms from those of antibiotics now used against tuberculosis and other bacterial pathogens, the investigators consider that the risk of developing resistance to cyclohexylgriselimycin is low.

"We hope that cyclohexylgriselimycin will become an agent that can even be used against resistant tuberculosis pathogens in the future and contributes to a more successful fight against this dreadful disease," said senior author Dr. Rolf Müller, head of the department of microbial natural products at the Helmholtz Centre for Infection Research. "In the tuberculosis pathogen, the substance binds to the so-called DNA clamp and thus suppresses the activity of the DNA polymerase enzyme, which multiplies the genetic information inside the cell. We resumed the work on this agent and optimized it such that it shows excellent activity in the infection model—even against multi-resistant tuberculosis pathogens."

Related Links:

Helmholtz Centre for Infection Research
Sanofi



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Portable Electronic Pipette
Mini 96
New
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: The rapid diagnostic test is being piloted across three UK hospitals (Photo courtesy of Imperial College Healthcare)

15-Minute Blood Test Diagnoses Life-Threatening Infections in Children

Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.