We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Preliminary Clinical Trial Demonstrates Feasibility of Treating Multiple Myeloma with the Patient's Own Marrow-Infiltrating Lymphocytes

By LabMedica International staff writers
Posted on 01 Jun 2015
Print article
Image: Micrograph shows marrow-infiltrating lymphocytes in cell culture (Photo courtesy of Dr. Kimberly Noonan, Johns Hopkins University).
Image: Micrograph shows marrow-infiltrating lymphocytes in cell culture (Photo courtesy of Dr. Kimberly Noonan, Johns Hopkins University).
Results of a small clinical trial support the feasibility of using a multiple myeloma patient's marrow-infiltrating lymphocytes (MILs) as the basis for adoptive T cell therapy (ACT).

Investigators at Johns Hopkins University (Baltimore, MD, USA) hypothesized that MIL-based ACT in multiple myeloma could impart greater anti-tumor immunity in that they are obtained from the tumor microenvironment.

They discussed results from the first MILs ACT multiple myeloma clinical trial in the May 20, 2015, online edition of the journal Science Translational Medicine. For this study 22 patients with either newly diagnosed or relapsed disease had their MILs harvested, activated, and expanded with anti-CD3/CD28 beads plus interleukin-2, and subsequently re-infused on the third day following the standard regimen of high dose chemotherapy and stem cell transplant therapy.

Results revealed that seven patients experienced at least 90% reduction in tumor cell volume and survived, on average, 25.1 months without cancer progression. The remaining 15 patients had an average of 11.8 progression-free months following MILs therapy. Overall survival was 31.5 months for those with less than 90% disease reduction, while follow-up time is currently more than six years for those with a better response. None of the participants exhibited serious side effects from the MILs therapy.

"What we learned in this small trial is that large numbers of activated MILs can selectively target and kill myeloma cells," said senior author Dr. Ivan Borrello, professor of oncology at Johns Hopkins University. "Several US cancer centers have conducted similar experimental treatments, known as adoptive T cell therapy, but the Johns Hopkins team is apparently the only one to use MILs. Other types of tumor-infiltrating cells can be used, but they are usually less plentiful in patients' tumors and may not grow as well outside the body."

Related Links:

Johns Hopkins University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.