We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




X-Ray Crystallography Study Reveals Structure of the Chemokine Receptor CXCR4 in Complex with a Viral Ch

By LabMedica International staff writers
Posted on 01 Feb 2015
The crystal structure of the protein complex created by the binding of the cellular receptor CXCR4 (C-X-C chemokine receptor-4) to its ligand has been solved by exploiting the binding characteristics of the viral chemokine analog vMIP-II.

CXCR4 is an alpha-chemokine receptor specific for stromal-derived-factor-1 (SDF-1 also called CXCL12), a molecule with potent chemotactic activity for lymphocytes. More...
This receptor is one of several chemokine receptors that HIV can use to infect CD4+ T-cells. During embryogenesis CXCL12 directs the migration of hematopoietic cells from fetal liver to bone marrow and the formation of large blood vessels. In adulthood, CXCL12 plays an important role in angiogenesis by recruiting endothelial progenitor cells (EPCs) from the bone marrow through a CXCR4 dependent mechanism. It is this function of CXCL12 that makes it a very important factor in carcinogenesis and the formation of new blood vessels that is linked to tumor progression. CXCL12 also has a role in tumor metastasis where cancer cells that express the receptor CXCR4 are attracted to metastasis target tissues that release the ligand, CXCL12.

vMIP-II (also called vCCL2) is a viral chemokine analog that is produced by Human herpesvirus 8. This protein is unique because it binds to a wide range of chemokine receptors even across different subfamilies: it binds to CCR1, CCR2, CCR5, CXCR4 (as an antagonist), and to CCR3 and CCR8 as an agonist.

The structural basis of receptor-chemokine recognition has been a long-standing unanswered question due to the challenges of structure determination for membrane protein complexes. However, investigators at the University of California, San Diego (USA) and their colleagues at the University of Southern California (Los Angeles, USA) have now reported the crystal structure of the chemokine receptor CXCR4 in complex with the viral chemokine antagonist vMIP-II at a resolution of 0.31 nm.

To overcome the difficulties of determining the structure of a membrane protein complex, the investigators combined computational modeling and disulfide trapping to vMIP-II to stabilize the complex. Once stabilized, X-ray crystallography was used to determine the three-dimensional atomic structure for the CXCR4-chemokine complex.

Results published in the January 22, 2015, online edition of the journal Science revealed that each receptor bound a single chemokine molecule, and that the interaction between the receptor and the ligand was more extensive than previously supposed, as there was a single large contiguous binding surface rather than two separate binding sites.

"This new information could ultimately aid the development of better small molecular inhibitors of CXCR4-chemokine interactions—inhibitors that have the potential to block cancer metastasis or viral infections," said senior author Dr. Tracy M. Handel, professor of pharmacology at the University of California, San Diego.

Related Links:

University of California, San Diego
University of Southern California



New
Gold Member
Hybrid Pipette
SWITCH
Collection and Transport System
PurSafe Plus®
Capillary Blood Collection Tube
IMPROMINI M3
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.