We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Risk of Cardiovascular Disease Linked to Apolipoprotein E Variants

By LabMedica International staff writers
Posted on 29 Sep 2014
The apoE4 variant form of circulating apolipoprotein E (apoE) leads to increased risk of cardiovascular disease by blocking binding of the normal apoE3 form to the apoliprotein E receptor 2 (apoER2) in the membranes of endothelial cells lining the walls of blood vessels and by interacting with the receptor without stimulating production of anti-inflammatory nitric oxide (NO). More...


Nitric oxide is a crucial physiological messenger molecule that plays a role in blood pressure regulation, control of blood clotting, immune defense, digestion, the senses of sight and smell, and possibly learning and memory. In addition to heightened susceptibility to cancer and neurodegenerative diseases, nitric oxide deficiency has been linked to diverse disease processes such as diabetes, stroke, hypertension, impotence, septic shock, and long-term depression.

ApoER2 is a membrane protein made up of 870 amino acids. It is separated into a ligand binding domain of eight ligand binding regions, an EGF-like domain containing three cysteine-rich repeats, an O-linked glycosylation domain of 89 amino acids, a transmembrane domain of 24 amino acids, and a cytoplasmic domain of 115 amino acids, including an arginine-proline-any amino acid-tyrosine (NPXY) motif.

Investigators at the University of Texas Southwestern Medical Center (Dallas, USA) worked with cell culture and mouse models to determine how the interaction between apoE variants and the apoER2 receptor influence risk of developing cardiovascular disease.

They reported in the September 2, 2014, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that in endothelial cells apoE3 binding to ApoER2 stimulated endothelial NO synthase (eNOS) and endothelial cell migration, and it also attenuated monocytes-endothelial cell adhesion. However, apoE4 did not stimulate eNOS or endothelial cell migration or dampen cell adhesion, and alternatively it selectively inhibited apoE3/apoER2 actions. Approximately 15% of individuals possess the gene coding for apoE4, and these individuals are at increased risk of developing atherosclerosis and coronary heart disease.

The investigators also identified in endothelium a nonfunctional variant of apoER2, apoER2-R952Q, which failed to generate production of NO after interaction with apoE3.

"We believe that we have identified one mechanism by which apoE3 promotes a healthy cardiovascular system and why a genetic variant, apoE4, is detrimental," said senior author Dr. Philip Shaul, professor of pediatrics at the University of Texas Southwestern Medical Center. "An important mechanism that is lost when people possess apoE4 is the ability to produce NO, which leads to a loss of both the reparative and anti-inflammatory capacities of the endothelium. Now, knowing this information, we believe such individuals may benefit from treatment with an NO donor. There is a form of aspirin, for instance, that is an NO donor."

Related Links:

University of Texas Southwestern Medical Center



New
Gold Member
Collection and Transport System
PurSafe Plus®
Collection and Transport System
PurSafe Plus®
Urine Chemistry Control
Dropper Urine Chemistry Control
ESR Analyzer
TEST1 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.