We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




X-Ray Powder Diffraction Technology Developed for Molecule Identification

By LabMedica International staff writers
Posted on 05 Aug 2014
A Danish researcher has developed a technique that uses X-rays for the rapid identification of substances present in an indeterminate powder. More...
The new technique has the capacity to recognize sophisticated biologic molecules such as proteins. The method therefore has enormous potential in food production and the pharmaceutical industry, where it opens up, for example, new opportunities for the quality assurance (QA) of protein-based drugs. The technique was developed by a Technical University of Denmark (DTU; Kongens Lyngby) researcher.

It is rarely sufficient to read the content information if one needs to know exactly what substances a product contains. One needs to be a very skilled chemist or to have “X-ray vision” to look directly into the molecular structure of the various substances. Christian Grundahl Frankaer, a postdoc in the DTU department of chemical engineering, is almost both, as he has developed technology that allows him to use X-rays to look deep into biologic samples.

The technique is called powder diffraction and involves subjecting a sample to an intense beam of X-rays. When the beam hits the sample, it disseminates in the same manner as light does when reflected by a disco ball. This generates a pattern that reflects the structure of the substance. Each individual substance has its own unique pattern, which makes it easily identifiable when the findings are run through a database.

Powder diffraction is currently used to identify basic substances such as salts, sugars, and minerals, but the theory behind using the same technique to characterize complicated biologic molecules such as proteins is groundbreaking. It is for this reason that the technology has huge possibilities in both food production and the pharmaceutical industry, where more and more attention is being dedicated to protein-based medicines.

“I have tested different types of infant milk formula, protein powders and detergents. By taking a small sample of powder and bombarding it with X-rays, I can determine what substances the powder contains, and in what concentrations, within 10 minutes. In addition, the analysis will typically reveal some information about how the product was made,” noted Dr. Frankaer. The method is therefore perfect for quality assurance of new products on the market.

Dr. Franaer added, “We have now demonstrated that powder diffraction can actually be used on biological substances such as proteins. The results are not as detailed as in single crystal diffraction, which makes it possible to decode the entire structure of the protein, but they do allow us to ‘lift fingerprints’ quickly and easily so that we can identify the protein and its crystal structure. This is valuable knowledge when you are working with the production of proteins.”

The technology has great potential in the framework of optimizing both quality and production processes in all production set-ups that involve solid substances. Applying the new approach will make it possible to check continuously for alterations in—or transformations of—different materials used in the production process. “The advantage of our method is that it allows you to take samples directly from a production line. You then have the results within 15 minutes and can tell precisely what crystalline material is involved. In addition, the X-ray beams we use can easily be generated using standard laboratory equipment,” stated Dr. Frankaer.

The promising findings are just beginning of the project, “What we want to do now is to test how far we can push the method. We have already established that it works on proteins, but will it also work on other complex products? And what happens if we take the samples to the synchrotron in Grenoble [France], where the X-ray beam is a million times more powerful than the one we have in our laboratory?” queried Dr. Frankaer.

Related Links:

Technical University of Denmark



New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Collection and Transport System
PurSafe Plus®
New
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
New
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.