We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Precise Ion Irradiation Dosing Method Developed for Cancer Therapy

By LabMedica International staff writers
Posted on 31 Jul 2014
Scientists are employing nuclear physics principles to provide more effective approaches to radiotherapy treatment for cancer patients.

Radiation therapy using heavy ions is best suitable for cancer patients with tumors that are difficult to access, such as in the brain. More...
These particles scarcely damage the penetrated tissue around the tumor, and can be used in such a way that they deliver their maximum energy only directly at their intended target: the tumor.

New research in this comparatively new technology is concentrated on the exact dosing: the investigators must figure out how precisely to set the radiation parameters to destroy the cancerous cells directly with as little damage as possible to the surrounding tissue. The solution depends on the extent to which the ions can be decelerated by body tissue on their way to the tumor.

Scientists from the Physikalisch-Technische Bundesanstalt (PTB; Braunschweig, Germany) have established a strategy for the more precise determination of the deceleration of carbon ions in the tissue in the therapeutically relevant area, which is totally a new approach. Although the measurement data available up to now must still become more exact, the technique has been show to perform well and can, in the future, contribute to improving the dosing for cancer therapy with carbon ions. The first findings of this research have been published June 13, 2014, in the journal Physics in Medicine and Biology.

Human tissue mostly consists of water. It can, therefore, be simulated in liquid water in which form accelerated ions can be blocked on their way and at which target they deliver their maximum energy quantity—at least hypothetically, because up to now research findings have existed only for water vapor. Scientists, however, assume that if the aggregate state is neglected, the data for the determination of the radiation dose become too imprecise.

PTB scientists have now succeeded for the first time in determining the decelerating power of liquid water for carbon ions with kinetic energies in the range of the maximum energy dissipation by experiment. These findings indicate that carbon ions are less strongly blocked in liquid water, per molecule, than in water vapor. As soon as more definitive data become available, the findings will include the calibration of ionization chambers, which are used to determine the dose in therapy planning. Currently, the Heidelberg Ion-Beam Therapy Center (HIT; Germany) is the only institution in Europe that irradiates patients with heavy ions.

The procedure applied by the researchers is based on a method that originates from nuclear physics: the inverted Doppler shift attenuation technique. While the carbon ions excited by a nuclear reaction move through the water volume, they are stopped and fall back into their ground state. The energy distribution of the gamma quanta emitted thereby is recorded with the aid of an ultra-pure germanium detector. The Doppler Effect, which leads to the displacement of the gamma energy, and the exponential-decay principle allow for the development of the velocity of the carbon ions with time to be studied, and therefore, conclusions about the stopping process can be drawn, according to the researchers.

Related Links:

Physikalisch-Technische Bundesanstalt
Heidelberg Ion-Beam Therapy Center


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Portable Electronic Pipette
Mini 96
New
Gold Member
Hematology Analyzer
Medonic M32B
New
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.