We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




A MicroRNA Regulates the Mechanism That Prevents Osteoporosis and Bone Metastasis

By LabMedica International staff writers
Posted on 07 Jul 2014
Print article
Image: Osteoclast, with bone below it, shows typical distinguishing characteristics: a large cell with multiple nuclei and a “foamy” cytosol (Photo courtesy of Wikimedia Commons).
Image: Osteoclast, with bone below it, shows typical distinguishing characteristics: a large cell with multiple nuclei and a “foamy” cytosol (Photo courtesy of Wikimedia Commons).
A study conducted on a mouse model of osteoporosis found that animals with higher than normal levels of the microRNA (miRNA) miR-34a were protected from the syndrome by having increased bone mass and reduced bone breakdown.

MiRNAs are fragments of RNA about 20 nucleotides long that block gene expression by attaching to molecules of messenger RNA (mRNA) in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA.

Investigators at the University of Texas Southwestern Medical Center (Dallas, USA) have been studying how microRNAs were involved in regulating skeletal biology. To this end, they used mouse models that either underexpressed or overexpressed miR-34a.

They reported in the June 25, 2014, online edition of the journal Nature that miR-34a-overexpressing transgenic mice exhibited lower bone resorption and higher bone mass. Conversely, miR-34a knockout and heterozygous mice exhibited elevated bone resorption and reduced bone mass. At the cellular level it was found that miR-34a or molecules that mimicked the function of miR-34a blocked the development of osteoclasts (cells that cause destruction of bone), which make the bone less dense and prone to fracture. High levels of bone destruction and reduced bone density caused by excessive numbers of osteoclasts are characteristic of osteoporosis.

The investigators pointed out that the mechanisms involved in development of osteoporosis were similar to those that allow certain cancers to metastasize into bone tissue.

“This new finding may lead to the development of miR-34a mimics as a new and better treatment for osteoporosis and cancers that metastasize to the bone,” said senior author Dr. Yihong Wan, assistant professor of pharmacology at the University of Texas Southwestern Medical Center. “Interestingly, the mouse miR-34a is identical to that in humans, which means that our findings may apply to humans as well.”

Related Links:

University of Texas Southwestern Medical Center


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.