We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Brain Buffer System Overcomes Molecular Disturbances in Circadian Clock

By LabMedica International staff writers
Posted on 30 Apr 2014
New evidence has been found for neuronal network communication that helps create a behavioral buffer in the brain to overcome certain disturbances in the molecular level circadian clock rhythms.

Circadian clocks time the sleep/wake cycles as well as many other physiological and cellular pathways to daily 24 hour rhythms. More...
In Drosophila, CLOCK (CLK) and CYCLE (CYC) proteins initiate the circadian system by promoting rhythmic transcription of hundreds of genes. Abolishment of circadian transcriptional oscillations (CTOs) has been shown to abolish circadian function. However, previous studies used manipulations in which the abolishment of the CTOs was very dramatic and involved strong up- or down-regulation of circadian genes.

In this study, a research team led by Sebastian Kadener, assistant professor at the Hebrew University of Jerusalem (Israel), used an innovative genetic approach that enabled them to generate Drosophila melanogaster fruit flies in which the amplitude of CLK-driven CTOs was reduced in a controlled way, either partially (approx. 60%) or strongly (90%). To the best of their knowledge, this is the first time CTOs have been partially damped in a living organism and their role assessed comprehensively.

The researchers postulated that in the brain, communication among the circadian neuronal groups can compensate for the dampened CTOs. This is not surprising, as results from studies on locomotor activity patterns in mammals with core clock protein mutations are among the same lines. However, in mammals the molecular machinery that drives circadian rhythms in the central versus the peripheral oscillators differs, whereas this does not seem to be the case in flies. Yet, in this study, the partial decrease in the amplitude of CTOs led to impaired function of circadian outputs in peripheral functions but did not significantly affect circadian locomotor behavior. This suggests that the clock in the brain has a specific compensatory mechanism. Moreover, flies with reduced CTOs that also had impaired circadian neuronal communication displayed aberrant circadian behavior rhythms.

The partially reduced CTOs led to low amplitude circadian protein oscillations (CPOs) that were not sufficient to drive outputs of peripheral oscillators, while circadian rhythms in locomotor activity were resistant to these partial reductions. This resilience of the brain oscillator was found to depend on communication among circadian neurons in the brain. Indeed, the capacity of the brain oscillator to overcome the low amplitude CTOs depends on the action of the neuropeptide PDF and on the pdf-expressing cells having equal or higher amplitude of CTOs than the rest of the circadian neuronal groups in the brain.

These findings support the idea of network buffering mechanisms that allows the brain to drive robust behavioral circadian rhythms even with low amplitude molecular oscillations. Therefore, in addition to revealing the importance of high amplitude CTOs for cell-autonomous circadian timekeeping, this work demonstrates that the brain's circadian neuronal network has an essential system that protects against disturbances in circadian transcription in the brain.

The study, by Weiss R. et al., was described in the journal PLOS Genetics, published April 3, 2014.

Related Links:

Hebrew University of Jerusalem



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Portable Electronic Pipette
Mini 96
Gel Cards
DG Gel Cards
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.