We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Silly Putty Component Used to Help in Stem Cell Therapies

By LabMedica International staff writers
Posted on 22 Apr 2014
The sponginess of the setting where human embryonic stem cells are growing, affects the type of specialized cells they will ultimately become, new research shows. More...
Scientists persuaded human embryonic stem cells to convert into working spinal cord cells more effectively by growing the cells on a soft, ultrafine carpet made of a key ingredient in Silly Putty [a substance with unusual properties based on silicone polymers, used as a toy].

The study’s findings were published online April 13, 2014, in the journal Nature Materials. This research is the first to directly link physical, instead of chemical, signals to human embryonic stem cell differentiation. Differentiation is the process of the source cells morphing into the body’s more than 200 cell types that become bone, muscle, nerves, and organs.

Jianping Fu, a University of Michigan (U-M; Ann Arbor, USA) assistant professor of mechanical engineering, noted that the findings offer the potential of a more effective way to guide stem cells to differentiate and potentially provide therapies for diseases such as amyotrophic lateral sclerosis (also known as Lou Gehrig’s disease), Huntington’s, or Alzheimer’s.

In the specially modified growth system, the “carpets,” Prof. Fu and his colleagues designed microscopic posts of the Silly Putty component polydimethylsiloxane to serve as the threads. By varying the post height, the researchers can adjust the stiffness of the surface they grow cells on. Shorter posts are more rigid—similar to an industrial carpet. Taller ones are softer—more plush.

The scientists found that stem cells they grew on the tall, softer micropost carpets turned into nerve cells much faster and more frequently than those they grew on the stiffer surfaces. After 23 days, the colonies of spinal cord cells—motor neurons that regulate how muscles move—that grew on the softer micropost carpets were four times more pure and 10 times larger than those growing on either traditional plates or rigid carpets.

“This is extremely exciting,” Prof. Fu said. “To realize promising clinical applications of human embryonic stem cells, we need a better culture system that can reliably produce more target cells that function well. Our approach is a big step in that direction, by using synthetic microengineered surfaces to control mechanical environmental signals.”

Prof. Fu is collaborating with physicians at the U-M Medical School. Eva Feldman, a professor of neurology, studies amyotrophic lateral sclerosis (ALS), which paralyzes patients as it kills motor neurons in the brain and spinal cord.

Researchers such as Prof. Feldman believe stem cell therapies—both from embryonic and adult varieties—might help patients grow new nerve cells. The researchers technique to try to generate fresh neurons from patients’ own cells. At this point, they are examining how and whether the process could work, and they hope to try it in humans in the future. “Prof. Fu and colleagues have developed an innovative method of generating high-yield and high-purity motor neurons from stem cells,” Prof. Feldman said. “For ALS, discoveries like this provide tools for modeling disease in the laboratory and for developing cell-replacement therapies.”

Prof. Fu’s findings go deeper than cell counts. The researchers verified that the new motor neurons they obtained on soft micropost carpets showed electrical behaviors comparable to those of neurons in the human body. They also identified a signaling pathway involved in regulating the mechanically sensitive behaviors. A signaling pathway is a route through which proteins ferry chemical messages from the cell’s borders to deep inside it. The pathway they narrowed in on, called Hippo/YAP, is also involved in controlling organ size and both causing and preventing tumor growth.

Prof. Fu reported that his findings could also provide clues into how embryonic stem cells differentiate in the body. “Our work suggests that physical signals in the cell environment are important in neural patterning, a process where nerve cells become specialized for their specific functions based on their physical location in the body,” he said.

Related Links:

University of Michigan



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The researchers identified gene expression and signaling pathways linked to severe RSV infection and future wheezing risk in children (Photo courtesy of Shutterstock)

New Biomarkers Predict Disease Severity in Children with RSV Bronchiolitis

Respiratory syncytial virus (RSV) remains a leading cause of acute bronchitis in infants and young children and continues to contribute significantly to global childhood illness and mortality.... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.