Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Ultraspeed Resolution Reveals that Ubiquitins Bind Sequentially

By LabMedica International staff writers
Posted on 15 Dec 2009
An innovative reaction quenching protocol with millisecond resolution has revealed that cells attach ubiquitin chains to proteins marked for destruction link by link rather than all at once. More...


The addition of a chain of four or more ubiquitin molecules to a target protein marks that protein for destruction by protein-degrading complexes in the cell. Heretofore, it was not known whether these molecules were added to the target protein sequentially or as a pre-formed chain.

In the current study, investigators at California Institute of Technology (Pasadena, USA) developed new methodology to study the action of ubiquitin ligase, the enzyme complex that attaches ubiquitin to the target protein at short time intervals that had not previously been possible. For this purpose, they adapted an instrument called a "quench-flow" machine, a machine that allows for extreme precision in the stopping, or "quenching," of a reaction. This instrument allowed them to follow changes in structure at intervals as short as 10 milliseconds in both yeast and human proteins.

"We devised methods to take snapshots of ubiquitin ligase reactions at a rate of up to 100 "pictures" every second," said senior author Dr. Raymond Deshaies, professor of biology at the California Institute of Technology. "This enables us to see things that would normally evade detection. Prior methods did not have sufficient time resolution to see what was going on. It is as if you gave an ice-cream cone to a kid and took pictures every minute. You would see the ice cream disappear from the first photo to the next, but since the pictures are too far apart in time, you would have no idea whether the child ate the ice cream one bite at a time, or swallowed the entire scoop in one gulp."

Results published in the December 3, 2009, issue of the journal Nature revealed that the three ubiquitin ligase enzymes, E1, E2, and E3 work as a team to build polyubiquitin chains on substrates by sequential transfers of single ubiquitins.

"The new method revealed the biological equivalent of small, single bites of ice cream," said Dr. Deshaies. "Using our approach we could see that our ubiquitin ligase builds ubiquitin chains one ubiquitin at a time. Gaining these kinds of insights into the ubiquitin system is important because ubiquitin ligases play a critical role in a number of human diseases, including cancer, due to their role in the regulation of the cell cycle."

Related Links:
California Institute of Technology



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Collection and Transport System
PurSafe Plus®
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.