We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Antimicrobial Hydrogels Dissolve and Sterilize Drug-Resistant Biofilms

By LabMedica International staff writers
Posted on 04 Feb 2013
Print article
Image: The polymer solution is free flowing (b, d) at room temperature (25 °C). When heated to body temperature (37 °C), the polymers self-assemble into a cross-linked network, causing the solution to form a gel (c, e) (Photo courtesy of IBM).
Image: The polymer solution is free flowing (b, d) at room temperature (25 °C). When heated to body temperature (37 °C), the polymers self-assemble into a cross-linked network, causing the solution to form a gel (c, e) (Photo courtesy of IBM).
Image: On the left is a mature and healthy MRSA biofilm. After the hydrogel is applied, the biofilm is destroyed as seen on the right. The small portion of cells left has drastically disrupted membrane, preventing resistance. This type of biofilm disruption has not been reported in other antimicrobial hydrogels/synthetic polymers (Photo courtesy of IBN).
Image: On the left is a mature and healthy MRSA biofilm. After the hydrogel is applied, the biofilm is destroyed as seen on the right. The small portion of cells left has drastically disrupted membrane, preventing resistance. This type of biofilm disruption has not been reported in other antimicrobial hydrogels/synthetic polymers (Photo courtesy of IBN).
Synthetic antimicrobial hydrogels have been developed that demonstrate 100% efficiency in destruction of biofilms, with application potential for catheter and medical device coatings, implants, skin, and everyday surfaces.

Bacterial biofilms, which are adhesive groupings of pathogenic cells present in 80% of all infections, develop on the skin and on medical devices and household surfaces where they are difficult to treat and demonstrate high resistance to antibiotics.

In the current study, which was published in the January 7, 2013, issue of the journal, Angewandte Chemie, investigators at IBM (San Jose, CA, USA) and the Institute of Bioengineering and Nanotechnology (Singapore) described the development of biodegradable and injectable/moldable hydrogels with hierarchical nanostructures. These 90% aqueous hydrogels were made from specifically designed macromolecules containing a large number of atoms, which combined water solubility, positive charge, and biodegradability characteristics. When mixed with water and warmed to body temperature the polymers self-assembled, swelling into a synthetic gel that was easy to manipulate.

The hydrogels were shown to possess broad-spectrum antimicrobial activities and biofilm-disruption capability. Furthermore, they demonstrated no cytotoxicity in vitro, and displayed excellent skin biocompatibility in animals.

"This is a fundamentally different approach to fighting drug-resistant biofilms. When compared to capabilities of modern-day antibiotics and hydrogels, this new technology carries immense potential,” said Dr. James Hedrick, advanced organic materials scientist at IBM. “This new technology is appearing at a crucial time as traditional chemical and biological techniques for dealing with drug-resistant bacteria and infectious diseases are increasingly problematic.”

“We were driven to develop a more effective therapy against super bugs due to the lethal threat of infection by these rapidly mutating microbes and the lack of novel antimicrobial drugs to fight them. Using the inexpensive and versatile polymer materials that we have developed jointly with IBM, we can now launch a nimble, multipronged attack on drug-resistant biofilms which would help to improve medical and health outcomes,” said Dr. Yi-Yan Yang, group leader at the Institute of Bioengineering and Nanotechnology.

Related Links:
IBM
Institute of Bioengineering and Nanotechnology

New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
PoC Testing Device
QuikRead
New
Sexually Transmitted Diseases Test
STD Panel Strip

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: A scanning electron microscope image of chiral gold nanoparticles developed for a new microfluidic chip (Matter, 2024; DOI: 10.1016/j.matt.2024.09.005)

Simple Blood Draw Helps Diagnose Lung Cancer 10 Times Faster

Once dismissed as cellular waste, exosomes—tiny vesicles released by cells containing proteins, DNA, or RNA fragments—have emerged as vital players in cell-to-cell communication over the past decade.... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The inbiome molecular culture ID technology has received FDA breakthrough device designation (Photo courtesy of inbiome)

Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics

Bacterial infections pose a major threat to public health, contributing to one in five deaths worldwide. Current diagnostic methods often take several days to provide results, which can delay appropriate... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: The GeneXpert system’s fast PCR Xpert tests can fight AMR and superbugs with fast and accurate PCR in one hour (Photo courtesy of Cepheid)

Cepheid Partners with Fleming Initiative to Fight Antimicrobial Resistance

Antimicrobial resistance (AMR) is responsible for over one million deaths globally each year and poses a growing challenge in treating major infectious diseases like tuberculosis, Escherichia coli (E.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.