We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Molecular Test Detects Difficult-to-Diagnose Chronic Blood Cancer

By LabMedica International staff writers
Posted on 26 Dec 2013
Print article
Image: Bone marrow aspirate smear from a patient with chronic myelomonocytic leukemia, a myeloproliferative neoplasm (Photo courtesy of M.Yared).
Image: Bone marrow aspirate smear from a patient with chronic myelomonocytic leukemia, a myeloproliferative neoplasm (Photo courtesy of M.Yared).
The current blood test used to diagnose blood cancer works by identifying mutation in a specific gene; however, it is not necessary that the gene should be present in every patient.

The Janus kinase 2 gene (JAK2) occurs in many myeloproliferative neoplasms, but the molecular pathogenesis of myeloproliferative neoplasms with nonmutated JAK2 is obscure, and the diagnosis of these neoplasms remains a challenge.

A collaborating team of scientists from the University of Cambridge (UK) and the Wellcome Trust Sanger Institute (Hinxton, UK) and other institutes performed exome sequencing of samples obtained from 151 patients with myeloproliferative neoplasms. The mutation status of the gene encoding calreticulin (CALR) was assessed in an additional 1,345 hematologic cancers, 1,517 other cancers, and 550 controls. They established phylogenetic trees using hematopoietic colonies and assessed calreticulin subcellular localization using immunofluorescence and flow cytometry.

The team analyzed the results of exome sequencing of DNA from granulocytes and constitutional DNA obtained from purified T cells or buccal cells in 168 patients with myeloproliferative neoplasms. The identification of appropriate constitutional DNA samples is a challenge among patients with myeloproliferative neoplasms, since circulating T cells and buccal cells may be contaminated by neoplastic cells. On sequencing the patients' DNA, the scientists identified a new gene called CALR, the mutations of which were associated with chronic blood cancer. They also noticed a rise in platelet counts and a decline in hemoglobin levels associated with JAK2 mutation.

The authors concluded that detection of CALR mutations in peripheral blood could potentially be used as a diagnostic tool in the same way that tests for JAK2 mutations have simplified and improved the accuracy of diagnosis of patients with myeloproliferative neoplasms worldwide. Peter J. Campbell, MB, ChB, PhD, from the Sanger Institute, who co-led the research, said, “There is now a sense of completeness with these disorders , the vast majority of our patients can now have a definitive genetic diagnosis made. In the next year or two, we will see these genetic technologies increasingly used in the diagnosis of all cancers, especially blood cancers.” The study was published on December 10, 2013, in the New England Journal of Medicine.

Related Links:

University of Cambridge
Wellcome Trust Sanger Institute 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The utilization of liquid biopsies in cancer research is a rapidly developing field (Photo courtesy of Lightspring/Shutterstock)

Blood Samples Enhance B-Cell Lymphoma Diagnostics and Prognosis

B-cell lymphoma is the predominant form of cancer affecting the lymphatic system, with about 30% of patients with aggressive forms of this disease experiencing relapse. Currently, the disease’s risk assessment... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Sampler device could revolutionize sample collection for diagnostic tests (Photo courtesy of ReadyGo Diagnostics)

First of Its Kind Universal Tool to Revolutionize Sample Collection for Diagnostic Tests

The COVID pandemic has dramatically reshaped the perception of diagnostics. Post the pandemic, a groundbreaking device that combines sample collection and processing into a single, easy-to-use disposable... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.