We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Greiner Bio-One

Download Mobile App

Blocking Basigin Binding Prevents Erythrocyte Invasion by Malaria Parasites

By Labmedica International staff writers
Posted on 24 Nov 2011
Print article
The red blood cell protein basigin has been identified as the focus for attachment and invasion of human erythrocytes by the malaria parasite Plasmodium falciparum.

Investigators at the Wellcome Trust Sanger Institute (Cambridge, United Kingdom) used their novel AVEXIS (Avidity-based Extracellular Interaction Screen) screening method to search a library of erythrocyte proteins for those with specific P. falciparum binding capability.

They reported in the November 9, 2011, online edition of the journal Nature that basigin, the Ok blood group antigen, is a receptor for PfRh5, a parasite ligand that is essential for blood stage growth. Basigin (BSG), also known as extracellular matrix metalloproteinase inducer (EMMPRIN) or cluster of differentiation 147 (CD147), is a protein that in humans is encoded by the BSG gene. This protein is a determinant for the Ok blood group system.

Erythrocyte invasion was potently inhibited by soluble basigin or by basigin knockdown, and invasion could be completely blocked using low concentrations of anti-basigin antibodies. These effects were observed across all laboratory-adapted and field strains of P. falciparum tested. Furthermore, erythrocytes that expressed a basigin variant with weaker binding affinity for PfRh5 had reduced invasion efficiencies.

This discovery of a cross-strain dependency on a single extracellular receptor–ligand pair for erythrocyte invasion by P. falciparum provides a focus for new antimalarial therapies. “Our findings were unexpected and have completely changed the way in which we view the invasion process,” said senior author Dr. Gavin Wright, head of the cell surface signaling laboratory at the Wellcome Trust Sanger Institute. “Our research seems to have revealed an Achilles' heel in the way the parasite invades our red blood cells. It is rewarding to see how our techniques can be used to answer important biological problems and lay the foundations for new therapies.”

Related Links:
Wellcome Trust Sanger Institute

Print article


Molecular Diagnostics

view channel
Image: The fluorescence fingerprinting device can test saliva for the presence of the synthetic cannabinoid receptor agonist “spice” in about five minutes (Photo courtesy of University of Bath)

Rapid Fluorescence Fingerprinting Assay for Identification of Synthetic Cannabinoid Receptor Agonists

A team of British researchers developed a rapid real-time, point-of-care test for the identification of synthetic cannabinoid receptor agonists (SCRAs), a class of illegal drugs known colloquilly as “Spice” or “K2”.... Read more


view channel
Image: A blood film showing neutrophils and lymphocytes and other white and red blood cells, and a platelet (Photo courtesy of University of Minnesota).

Hematological Ratios Associated with Mortality in Pediatric Trauma Patients

Trauma-related injury as a potential cause of death affects millions of people worldwide, especially in less developed countries and furthermore, it is the leading cause of mortality in pediatric trauma patients.... Read more
Copyright © 2000-2019 Globetech Media. All rights reserved.