Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




Hybrid Protein Developed as Tools for Gene Cutting, Editing

By LabMedica International staff writers
Posted on 23 Sep 2010
A U.S. More...
team of researchers has developed a kind of hybrid proteins that can make double-strand DNA breaks at specific sites in living cells, potentially leading to better gene replacement and gene editing therapies.

Dr. Bing Yang, assistant professor of genetics, development and cell biology at Iowa State University (ISU; Ames, USA;), and his colleagues developed the hybrid protein by joining parts of two different bacterial proteins. One is called a TAL (transcription activator-like) effector, which functions to find the specific site on the gene that needs to be cut, and the other is an enzyme called a nuclease that cuts the DNA strands. Dr. Yang hopes this study will lead to the ability to engineer genomes by cutting out defective or undesirable parts of DNA, or by replacing defective or undesirable gene segments with a functioning piece of replacement DNA--a process called homologous recombination.

Dr. Yang reported that these hybrid proteins could be constructed to locate specific segments of the DNA in any sort of organism. "This breakthrough could eventually make it possible to efficiently modify plant, animal and even human genomes,” said Dr. Yang. "It should be effective in a range of organisms.”

The proteins function by binding onto the specific segment of DNA the researcher needs to change. These proteins do this by reading the DNA sequence and finding the specific area to be cut. Once the protein binds onto the DNA at the correct spot, the other half of the protein then cuts the double-stranded DNA. Bad or undesirable DNA can be resected and good or more desirable DNA can be introduced. When the DNA heals, the good DNA is included in the gene.

Dr. Yang began his project approximately one year ago after seeing the results of research by Dr. Adam Bogdanove, ISU associate professor of plant pathology, showing that TAL effectors use a very clear-cut code to bind to a specific DNA sequence. This discovery allowed Dr. Yang to predict precisely where the TAL effector nuclease will bind on the DNA to make the cut. Another study had similar results.

The conecept has also been validated by Dr. Bogdanove and Dr. Dan Voytas, collaborator in genetics, development, and cell biology at Iowa State, and director of the Center for Genome Engineering at the University of Minnesota (Twin Cities, USA). The TAL effector-nuclease approach improves on tools currently available for genome modification. It should be faster and less expensive to make TAL effector nucleases, and simpler to design them to recognize specific DNA sequences, according to Dr. Yang.

Yang's findings appeared in August 2010 in the online version of the journal Nucleic Acids Research. Dr. Voytas' and Bogdanove's study also appeared in August 2010 the journal Genetics. Dr. Voytas and Dr. Bogdanove were also able to demonstrate that the TAL effector part of the hybrid protein can be modified to target new DNA sequences.

Related Links:

Iowa State University



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
New
DNA/RNA Extraction/Purification Kit
Nucleic Acid Extraction or Purification Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.