We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Ultrasensitive Blood Test Uses Tumor DNA to Predict Lung Cancer Outcome

By LabMedica International staff writers
Posted on 17 Jan 2025
Print article
Image: The study demonstrates the importance of ultra-sensitive ctDNA detection in lung cancer (Photo courtesy of Shutterstock)
Image: The study demonstrates the importance of ultra-sensitive ctDNA detection in lung cancer (Photo courtesy of Shutterstock)

A groundbreaking study has revealed advancements in lung cancer detection using an ultra-sensitive personalized test designed to identify even the smallest traces of circulating tumor DNA (ctDNA) in the blood of cancer patients and survivors.

In the TRACERx lung cancer study, researchers at the Francis Crick Institute (London, UK) and University College London (London, UK) utilized the NeXT Personal assay from Personalis, Inc. (Fremont, CA, USA) to demonstrate the significance of ultra-sensitive ctDNA detection in lung cancer. The NeXT Personal assay employs whole-genome sequencing of a patient's tumor to identify a unique genetic signature, consisting of up to approximately 1,800 variants. Based on this, a personalized blood test is created for the patient to detect the ctDNA signature with ultra-high sensitivity, down to approximately 1 part per million (PPM) of ctDNA. In their study, the researchers applied NeXT Personal to analyze pre-operative blood samples from 171 patients in the TRACERx cohort who had early-stage non-small cell lung cancer (NSCLC).

The NeXT Personal test demonstrated exceptional sensitivity in detecting early-stage I-III NSCLC pre-operatively, identifying 100% of non-adenocarcinomas and 81% of lung adenocarcinomas (LUAD), a common subtype that has been particularly challenging to detect in blood samples due to low ctDNA shedding. The study, published in Nature Medicine, also found that ctDNA levels before surgery were highly predictive of overall survival in early-stage LUAD patients. Those who tested negative for ctDNA before surgery with NeXT Personal showed a 100% 5-year overall survival rate, while those who tested positive exhibited a higher risk of relapse during the same period. Furthermore, even patients with very low levels of cancer (below 80 PPM of ctDNA) showed a high risk of recurrence, highlighting the importance of ultra-sensitive minimal residual disease (MRD) testing with NeXT Personal. These findings suggest the potential of NeXT Personal in guiding the management of lung cancer, which is one of the most prevalent cancers and has high recurrence rates, even in early-stage cases.

"We designed NeXT Personal to detect residual or recurrent cancer in its earliest stages, and this study shows the clinical importance of that ultra-sensitive detection in early-stage lung cancer,” said Richard Chen, MD, MS, Chief Medical Officer and Executive Vice President of R&D at Personalis. “We look forward to continuing our work with the TRACERx team on the broader clinical performance of ctDNA testing in early stage lung cancer. We expect the subsequent publication of those results will help support our submission for Medicare coverage of NeXT Personal Dx in lung cancer.”

Related Links:
Francis Crick Institute
University College London
Personalis, Inc.

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Ultrasonic Cleaner
UC 300 Series
New
Cytomegalovirus Test
NovaLisa Cytomegalovirus (CMV) IgG Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.