We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nanorobotic Hand Made of DNA Grabs Viruses for Detection or Inhibition

By LabMedica International staff writers
Posted on 28 Nov 2024
Print article
Image: In this artist’s rendering, three “NanoGripper” hands wrap around a COVID-19 virus (Photo courtesy of Xing Wang/U. of I.)
Image: In this artist’s rendering, three “NanoGripper” hands wrap around a COVID-19 virus (Photo courtesy of Xing Wang/U. of I.)

Researchers have developed a miniature, four-fingered “hand” from a single piece of DNA, designed to detect the virus responsible for COVID-19 with high sensitivity, and even prevent viral particles from entering cells to cause infection. Known as the NanoGripper, this nanorobotic hand can be customized to interact with other viruses or identify cell surface markers, potentially enabling targeted drug delivery, such as cancer treatments.

Drawing inspiration from the grasping ability of human hands and bird claws, researchers at the University of Illinois Urbana-Champaign (Champaign, IL, USA) designed the NanoGripper, which consists of four flexible fingers and a palm, all formed from one DNA nanostructure. Each finger features three joints, similar to a human finger, with its bending angle controlled by the design of the DNA scaffold. The fingers include DNA aptamers, molecules engineered to specifically bind to targets like the spike protein of the COVID-19 virus, causing the fingers to bend and encircle the target. The NanoGripper's base can attach to surfaces or other complexes, making it suitable for biomedical applications, such as sensing or drug delivery. For COVID-19 detection, the researchers integrated the NanoGripper with a photonic crystal sensor, resulting in a rapid 30-minute COVID-19 test that matches the sensitivity of traditional qPCR tests used in hospitals, which, while accurate, take longer than at-home tests.

Apart from diagnostics, the NanoGripper has potential applications in preventive medicine. The researchers discovered that when NanoGrippers were introduced into cell cultures exposed to COVID-19, the grippers surrounded the viruses, blocking the viral spike proteins from binding to the cell receptors, effectively preventing infection. In their article published in Science Robotics, the researchers explain that the NanoGripper can be easily modified to target other viruses, such as influenza, HIV, or hepatitis B. Additionally, they foresee using the NanoGripper for targeted drug delivery, where the fingers could be engineered to recognize specific cancer markers and deliver therapeutic agents directly to the affected cells.

“This approach has bigger potential than the few examples we demonstrated in this work,” said Xing Wang, a professor of bioengineering and of chemistry at the U. of I., who led the research team. “There are some adjustments we would have to make with the 3D structure, the stability and the targeting aptamers or nanobodies, but we’ve developed several techniques to do this in the lab. Of course it would require a lot of testing, but the potential applications for cancer treatment and the sensitivity achieved for diagnostic applications showcase the power of soft nanorobotics.”

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Fixed Speed Tube Rocker
GTR-FS
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.