We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

By LabMedica International staff writers
Posted on 18 Sep 2024
Print article
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological disorders or certain types of cancer that suppress antigen expression. However, only a very small number of individuals are AnWj-negative due to genetic factors. While ABO and Rh are the most well-known blood group systems, blood matching across less familiar groups, such as AnWj, can be critical for saving lives. Individuals who are AnWj-negative risk a transfusion reaction if they receive AnWj-positive blood. Researchers have now uncovered the genetic background of the AnWj antigen, enabling the identification and treatment of rare patients who lack this blood group. This discovery paves the way for the development of new genotyping tests to detect individuals with the inherited AnWj-negative phenotype, reducing the risk of complications from blood transfusions.

The research, led by investigators from the University of Bristol (Bristol, UK), has identified a new blood group system, MAL, the 47th known system, as the home of the AnWj antigen. The team discovered that the AnWj antigen is carried on the Mal protein. More than 99.9% of people are AnWj-positive, with those individuals expressing full-length Mal protein on their red blood cells. In contrast, this protein was absent in the cells of AnWj-negative individuals. The study identified homozygous deletions in the MAL gene associated with the inherited AnWj-negative phenotype. Among the participants were five genetically AnWj-negative individuals, including a family of Arab-Israelis. One of the blood samples tested was from a woman who had first been identified as AnWj-negative in the 1970s.

The researchers employed whole exome sequencing, which analyzes the protein-coding regions of DNA, to demonstrate that these rare inherited cases were caused by homozygous deletions in the MAL gene, which encodes the Mal protein. They confirmed that Mal is responsible for binding AnWj antibodies from these rare patients through experiments that showed specific reactivity with cells containing the normal MAL gene, but not the mutant gene. The findings of this research were published in the journal Blood.

“Resolving the genetic basis for AnWj has been one of our most challenging projects. There is so much work that goes into proving that a gene does actually encode a blood group antigen, but it is what we are passionate about, making these discoveries for the benefit of rare patients around the world,” said Nicole Thornton, Head of IBGRL Red Cell Reference at NHS Blood and Transplant, which was a part of the research group. “Now genotyping tests can be designed to identify genetically AnWj-negative patients and donors. Such tests can be added to the existing genotyping platforms.”

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Herpes Simplex Virus ELISA
HSV 2 IgG – ELISA
New
TRAb Immunoassay
Chorus TRAb

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.