Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Genetic Analysis of Lyme Disease Bacteria to Enable More Accurate Diagnostic Tests

By LabMedica International staff writers
Posted on 21 Aug 2024

Lyme disease is the most prevalent tick-borne illness in North America and Europe, affecting hundreds of thousands of individuals annually. The disease is caused by bacteria from the Borrelia burgdorferi sensu lato group, which are transmitted to humans through the bites of infected ticks. Symptoms typically include fever, headache, fatigue, and a distinctive skin rash. If not treated promptly, the infection can spread to the joints, heart, and nervous system, leading to more severe complications. Now, researchers have conducted a genetic analysis of the bacteria responsible for Lyme disease, potentially leading to advancements in the diagnosis, treatment, and prevention of this tick-borne illness.

A research team led by biologists at CUNY Graduate Center (New York, NY, USA) has mapped the complete genetic sequences of 47 strains of Lyme disease-related bacteria from across the globe, creating a valuable resource for identifying the specific bacterial strains that infect patients. This genetic data could improve the accuracy of diagnostic tests and enable treatments tailored to the particular strain of bacteria causing each patient’s infection. The researchers also suggest that the genetic information from this study could contribute to the development of more effective vaccines against Lyme disease. The team sequenced the full genomes of bacteria from all 23 known species in the Borrelia group, many of which had never been sequenced before. The project included both bacteria strains commonly associated with human infections and species not known to cause human disease.

By comparing these genomes, the researchers traced the evolutionary history of Lyme disease bacteria, discovering that the bacteria likely originated millions of years ago, before the breakup of the ancient supercontinent Pangea. This could explain the global distribution of these bacteria. The study, published in the journal mBio, also revealed how these bacteria exchange genetic material within and between species. This recombination process allows the bacteria to quickly evolve and adapt to new environments. The researchers identified specific regions in the bacterial genomes where this genetic exchange occurs most frequently, often involving genes that enable the bacteria to interact with their tick vectors and animal hosts.

To support further research, the team has developed web-based software tools that enable scientists to compare Borrelia genomes and identify factors that contribute to human pathogenicity. Looking forward, the researchers plan to extend their analysis to include more strains of Lyme disease bacteria, particularly from regions that have been less studied. They also aim to explore the functions of genes unique to the strains that cause disease, which could lead to the discovery of new therapeutic targets. As climate change drives the expansion of Lyme disease into new areas, this research provides essential tools and insights to address the growing public health challenge.

“By understanding how these bacteria evolve and exchange genetic material, we’re better equipped to monitor their spread and respond to their ability to cause disease in humans,” said Weigang Qiu, a professor of Biology at the CUNY Graduate Center and the corresponding author of the study.

Related Links:
CUNY Graduate Center

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Benchtop Cooler
PCR-Cooler & PCR-Rack
New
Alpha-Fetoprotein Reagent
AFP Reagent Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.