We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




AI Tongue Analysis Model 98% Accurate in Detecting Diseases

By LabMedica International staff writers
Posted on 13 Aug 2024
Print article
Image: A researcher demonstrates how a camera captures images of the tongue and analyses it for disease (Photo courtesy of MTU)
Image: A researcher demonstrates how a camera captures images of the tongue and analyses it for disease (Photo courtesy of MTU)

Tongue color is a critical health indicator used to identify diseases and gauge their progression. Various characteristics of the tongue, such as its color, shape, and coating, can signal different health conditions. For instance, a yellow tongue often indicates diabetes, while a purple tongue with a thick coating might suggest cancer. Patients with acute strokes typically have unusually shaped, red tongues. A white tongue could mean anemia; a deep red tongue is frequently seen in severe COVID-19 cases; and indigo or violet tongues may point to vascular, gastrointestinal issues, or asthma. Leveraging this concept, artificial intelligence (AI) is now modernizing a 2000-year-old practice from traditional Chinese medicine that involves diagnosing health conditions by examining the tongue.

Researchers from Middle Technical University (MTU, Baghdad, Iraq) and the University of South Australia (UniSA, Adelaide, Australia) conducted experiments utilizing AI to analyze tongue color for diagnosing diseases. They trained machine learning algorithms using 5260 images and collected 60 additional tongue images from patients with various health conditions at two teaching hospitals in the Middle East. Their imaging system proposed in a new paper published in Technologies analyzes tongue color to offer immediate diagnostic insights, demonstrating AI's potential to significantly advance medical practice.

In their study, cameras positioned 20 centimeters from subjects captured images of their tongues, and the AI system assessed the health conditions in real-time. The AI model successfully correlated tongue colors with specific diseases in nearly all cases, achieving a 98% accuracy rate in diagnosing a variety of conditions including diabetes, stroke, anemia, asthma, liver and gallbladder diseases, COVID-19, and various vascular and gastrointestinal issues by analyzing tongue color. The researchers anticipate that in the future, smartphones could be employed to perform similar diagnoses, enhancing accessibility and convenience in medical diagnostics.

“These results confirm that computerized tongue analysis is a secure, efficient, user-friendly and affordable method for disease screening that backs up modern methods with a centuries-old practice,” said co-author UniSA Professor Javaan Chahl.

Related Links:
MTU
UniSA

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Cytomegalovirus Real-Time PCR Test
Quanty CMV Virus System
New
Creatine Kinase-MB Assay
CK-MB Test

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.