We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cutting-Edge AI Analyzes Blood Samples to Predict Disease 10 Years Before Diagnosis

By LabMedica International staff writers
Posted on 31 Jul 2024
Print article
Image: AI insights predict disease a decade in advance (Photo courtesy of University of Edinburgh)
Image: AI insights predict disease a decade in advance (Photo courtesy of University of Edinburgh)

Scientists have developed an advanced artificial intelligence (AI) approach that can predict the likelihood of developing age-related conditions such as Alzheimer's and heart disease up to a decade before symptoms manifest. By analyzing blood samples from over 45,000 individuals using machine learning, researchers identified specific protein patterns associated with an increased risk of disease. This capability to predict the probability of developing a health condition before any symptoms are observed could potentially enhance personalized medicine by providing early warnings, thereby opening doors for preventative interventions.

Researchers from the University of Edinburgh (Edinburgh, UK) participated in a study that used data from the UK Biobank, which contains genetic and health information from half a million UK participants. They applied AI and machine learning to detect protein patterns in blood that correlate with the onset of common ailments including Alzheimer’s, heart disease, and type 2 diabetes. The analysis was based on medical records that extended up to ten years following the initial blood sample collection.

Furthermore, the research team validated their findings by applying the identified protein patterns to diagnose conditions in blood samples from another group of participants who were not included in the initial analysis. The results, detailed in the journal Nature Aging, showed that these protein patterns could predict health conditions with greater accuracy than traditional risk factors such as age, sex, lifestyle choices, cholesterol levels, and other standard clinical measurements. Although the implementation of this predictive analysis may not be immediate, experts acknowledge that this research marks significant progress in the field of risk prediction.

“It’s encouraging to see how much potential there is from a single blood sample that allow us to predict a range of disease outcomes,” said Dr. Danni Gadd, University of Edinburgh. “Being able to detect early warning signs for a broad set of conditions may lead to opportunities for early intervention and prevention, marking a significant moment for the healthcare industry.”

Related Links:
University of Edinburgh

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Nutating Mixer
Enduro MiniMix
New
Creatine Kinase-MB Assay
CK-MB Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.