We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Whole Genome Sequencing Detects Infection Transmission in NICU

By LabMedica International staff writers
Posted on 23 May 2024
Print article
Image: NGD’s automated bioinformatic systems facilitate use of WGS to detect transmission in NICUs (Photo courtesy of NGD)
Image: NGD’s automated bioinformatic systems facilitate use of WGS to detect transmission in NICUs (Photo courtesy of NGD)

A new study has shown that whole genome sequencing (WGS) of bacterial pathogens acquired from surveillance in a neonatal intensive care unit (NICU) can reveal significant infection transmission that goes undetected by standard infection control measures. The research highlights that even in well-equipped medical facilities and in areas like the NICU where vigilant monitoring is routine, WGS provides a level of detection of transmission events that current methods cannot achieve.

Conducted by Next Gen Diagnostics (NGD, West Palm Beach, FL, USA) and researchers from Vanderbilt University Medical Center (VUMC, Nashville, TN, USA), the study analyzed 171 S. aureus samples from 132 individual patients. These samples were collected during routine surveillance in April, June, and July, and were supplemented with clinical samples. The samples were sequenced using short-read sequencing techniques and analyzed by NGD’s automated system to determine the relatedness of core genomes at the SNP level.

A stringent cutoff of 6 SNPs was used to identify potential transmission, which was then further assessed by the VUMC infection prevention team. The analysis found that 42 out of 132 patients (31.8%) with S. aureus infections were linked by transmission chains. Notably, the incidence of patients with MRSA infections connected by transmission was 46.8%, more than double the rate found in patients with MSSA infections, which stood at 21.2%. The study identified 13 distinct strains involved in these transmissions, indicating localized, undetected sources of spread rather than a ward-wide outbreak.

“We found that WGS of S. aureus isolates obtained from surveillance swabs and clinical samples revealed a significant amount of likely transmission, which provided guidance enabling our infection control team to take a series of actions with beneficial effect,” said Dr. Romney Humphries, Professor of Pathology, Microbiology and Immunology and Director of Laboratory Medicine at VUMC and senior author on the study.

“This result, along with those emerging from other medical centers, of the use of WGS to detect rather than simply verify transmission may signal a sea-change in best practice,” added Tom Talbot, Professor of Medicine and Medical Director of Infection Prevention at VUMC. “With a sufficiently low cost for sequencing and bioinformatic analysis, use of WGS to detect transmission, at least in those wards where patients are at the greatest risk, may become a more routine infection prevention practice.”

Related Links:
NGD
VUMC

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Hemoglobin/Haptoglobin Assay
IDK Hemoglobin/Haptoglobin Complex ELISA
New
Malondialdehyde HPLC Test
Malondialdehyde in Serum/Plasma – HPLC

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.