Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Events

10 Feb 2026 - 13 Feb 2026
17 Apr 2026 - 21 Apr 2026

Simple Blood Test Measures Repetitive DNA for Early Cancer Detection

By LabMedica International staff writers
Posted on 05 Mar 2024

Cancer patients can have varying levels of a specific kind of repetitive DNA known as Alu elements in comparison to those without cancer. More...

Despite constituting about 11% of the DNA in humans and other primates, Alu elements have traditionally been considered too complex to be effectively utilized as biomarkers due to their small, repetitive nature. Now, advancements in machine learning can allow for the measurement of these elements through a simple blood draw.

Researchers at Johns Hopkins Medicine (Baltimore, MD, USA) leveraged this insight to improve a test designed for early cancer detection. They began their study with a sample size that was ten times larger than what is usually seen in such research. Alu elements are relatively small, each being about 300 base pairs in length within the vast 2 billion-step DNA ladder. Yet, changes in the proportion of Alu elements in blood plasma are consistent, irrespective of the cancer’s origin. The research team had previously developed a test for detecting aneuploidy, a condition involving chromosome copy number alterations common in cancers, using a liquid biopsy blood test. This test identifies fragments of cancer cell DNA circulating in the bloodstream. While conducting this research, they noticed an unusual signal that differentiated between cancer and non-cancer, which wasn’t attributed to changes in chromosome numbers. Consequently, they combined their original test, which analyzed 350,000 repetitive DNA locations, with an unbiased machine learning approach.

In their study, the team analyzed samples from 3,105 individuals with solid tumors and 2,073 without cancer, covering 11 types of cancer and evaluating 7,615 blood samples. The repetitive DNA sequences were examined repeatedly to assess the accuracy of the model. They achieved a specificity rate of 98.9%, crucial for minimizing false positives, especially when screening asymptomatic individuals to avoid erroneous cancer diagnoses. In an independent validation set, incorporating Alu elements into the machine learning model identified 41% of cancer cases that were missed by eight existing biomarkers and the team’s earlier test. The most significant contributor to cancer detection was identified as AluS, the largest subfamily of Alu elements. People with cancer were found to have lower levels of AluS in their blood plasma than typical. The researchers expect their Alu-based cancer detection method to complement the array of existing cancer diagnostic tools. Their next step involves identifying the most promising biomarkers and combining them for enhanced efficacy.

Related Links:
Johns Hopkins Medicine


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.