Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Ultra-Sensitive ctDNA Assay Significantly Improves Detection Rates for Early-Stage Lung Cancer

By LabMedica International staff writers
Posted on 27 Oct 2023
Print article
Image: The Personalis NeXT Personal cancer assay is designed to detect and monitor residual and recurrent disease (Photo courtesy of 123RF)
Image: The Personalis NeXT Personal cancer assay is designed to detect and monitor residual and recurrent disease (Photo courtesy of 123RF)

The existing method for confirming a recurrence of non-small cell lung cancer (NSCLC), the most frequent form of lung cancer, largely relies on imaging techniques like CT scans, which have known limitations in terms of sensitivity. Now, initial findings from a groundbreaking lung cancer study mark a significant advancement in lung cancer circulating tumor DNA (ctDNA) detection and management.

Personalis, Inc. (Menlo Park, CA, USA) has developed the NeXT Personal cancer assay for identifying and monitoring minimal residual and recurrent disease (MRD). The assay has demonstrated considerably higher detection rates for early-stage lung cancer, including lung adenocarcinoma (LUAD), a subtype of NSCLC that is notably challenging to identify in blood tests. The NeXT Personal technology employs whole genome sequencing and advanced noise suppression technology called NeXT SENSE to isolate a distinct genetic signature from a patient's tumor. This signature, based on around 1,800 variants, is then monitored over time in the patient's blood to identify any recurring or residual cancer. The technology boasts an industry-leading sensitivity level that goes down to about 1 PPM, which opens up the possibility for earlier risk assessment, early detection, more accurate monitoring, and thus, a significant improvement in lung cancer management.

For the current analysis, NeXT Personal was used to identify and track MRD in over 170 patients who were part of the TRACERx lung cancer study group. The assay displayed significantly higher sensitivity in detecting early-stage NSCLC compared to findings reported in two earlier studies focused on the TRACERx cohort. Before surgical intervention, NeXT Personal demonstrated a 100% sensitivity rate for ctDNA in non-LUAD samples and an 81% sensitivity rate for LUAD. This represents up to a fourfold increase in pre-surgical sensitivity for early-stage LUAD compared to prior research, significantly enhancing the assay's ability to effectively monitor lung cancer.

The study also revealed that NeXT Personal could classify patients into groups with lower or higher risks of cancer recurrence based on pre-surgical ctDNA levels. This ultra-sensitive ctDNA detection capability was pivotal in assessing patient recurrence risk. For instance, patients with LUAD who had no detectable ctDNA before surgery showed an impressive 100% overall five-year survival rate and a 94% relapse-free survival rate. In contrast, those with detectable ctDNA faced a high risk of cancer recurrence over a five-year period.

Moreover, NeXT Personal allowed for earlier detection of residual or recurring lung cancer post-surgery. The data indicate a median lead time of around 6 to 11 months for ctDNA detection ahead of conventional imaging methods, and substantially longer than previous findings from the TRACERx study. This earlier detection can potentially facilitate quicker treatment interventions for patients at higher risk. Overall, the findings from the TRACERx study underscore the potential utility of NeXT Personal in guiding patient management from the pre-surgery phase through to post-operative care and long-term monitoring.

"Existing tests for lung cancer patients often fall short in detecting residual or recurrent cancer early,” said Richard Chen, MD, MS, Chief Medical Officer and Executive Vice President, R&D of Personalis. “Our NeXT Personal test is designed to change that by being significantly more sensitive. We are thrilled that the TRACERx results presented at ESMO demonstrated higher sensitivity for the most common types of early-stage lung cancer, including the most challenging subtypes. That sensitivity translated into a better understanding of recurrence risk for patients, and earlier detection of recurrence. We hope that earlier detection can ultimately be life-saving, offering patients a greater chance at successful treatment."

Related Links:
Personalis, Inc.

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Cytomegalovirus Test
NovaLisa Cytomegalovirus (CMV) IgG Test
New
Chagas Disease Test
LIAISON Chagas

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.