We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood- And Urine-Based Biomarker Tests Could Identify Treatment of Acute Kidney Injury

By LabMedica International staff writers
Posted on 25 May 2023
Print article
Image: Medication, sepsis and inadequate blood supply to the kidneys are potential causes of AKI (Photo courtesy of Freepik)
Image: Medication, sepsis and inadequate blood supply to the kidneys are potential causes of AKI (Photo courtesy of Freepik)

Hospitalized patients who experience an acute kidney injury (AKI) often face unfavorable outcomes post-discharge, with limited effective treatment options. AKI can stem from various causes, such as sepsis, medication, or inadequate blood supply during cardiac bypass. Additionally, different cell types within the kidneys can sustain damage during AKI. Current AKI diagnosis relies on simple kidney function blood tests or measuring changes in urine output. These rudimentary diagnostic methods fail to identify the precise cause of injury or predict which patients are likely to respond better to treatment or recover kidney function. However, that could now change with the advent of new tests for biomarkers to identify the treatment of AKI.

Researchers at UW Medicine (Seattle, WA, USA) led a study involving retrospective analysis of 769 patients with AKI and 769 without the condition, monitoring them for five years post-hospital discharge. They identified two molecularly distinct AKI subgroups, or sub-phenotypes, linked with different risk profiles and long-term outcomes. One group had higher instances of congestive heart failure, while the other exhibited elevated rates of chronic kidney disease and sepsis. The latter group also displayed a 40% increased risk for significant adverse kidney events five years onward, compared to the first group.

Interestingly, factors like sex, diabetes rate, or major surgical procedures as the cause of AKI did not vary across AKI subgroups. This suggests that routinely measured clinical indicators may not forecast the AKI subgroups, necessitating the assessment of blood and urine biomarkers for identification. Based on the findings, the researchers have proposed a strategy to categorize AKI patient subpopulations, aiming to identify therapies tailored to specific patient groups. Similar to how unique biomarkers guide treatments for patient subgroups with cancer or asthma, blood- and urine-based biomarkers could potentially help distinguish subgroups of patients with AKI, resulting in the development of new treatment ideas.

“We’re attempting to better understand the clinical factors and molecular drivers of acute kidney injury so that, in the long run, we can better treat the different ways that people experience this disease process,” said Dr. Jonathan Himmelfarb, a professor of nephrology at the UW School of Medicine and the study’s senior author. “We want to better understand the individual characteristics of people who get acute kidney injury so we can establish common characteristics of subgroup populations of these patients to know whose risk is relatively higher or lower, and work toward treatments specific to their needs.

Related Links:
UW Medicine

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HbA1c Test
HbA1c Rapid Test
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.