We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

HEMOCUE AB

HemoCue AB develops, produces, and markets medical diagnostic products for point of care testing (POC) markets. Its p... read more Featured Products: More products

Download Mobile App




Hematological Neoplasm Cytogenetics Profiled With Optical Genome Mapping

By LabMedica International staff writers
Posted on 25 Oct 2022
Print article
Image: The Bionano Genomics Saphyr platform offers sample preparation, DNA imaging and genomic data analysis technologies combined into one streamlined workflow that enables one to identify structural variants and create de novo genome assemblies (Photo courtesy of Bionano Genomics)
Image: The Bionano Genomics Saphyr platform offers sample preparation, DNA imaging and genomic data analysis technologies combined into one streamlined workflow that enables one to identify structural variants and create de novo genome assemblies (Photo courtesy of Bionano Genomics)

The current standard-of-care cytogenetic techniques for the analysis of hematological malignancies include karyotyping, fluorescence in situ hybridization, and chromosomal microarray analysis (CMA), which are labor intensive and time and cost prohibitive, and they often do not reveal the genetic complexity of the tumor, demonstrating the need for alternative technology for better characterization of these tumors.

Optical genome mapping (OGM) has emerged as a next-generation cytogenomic technology that can detect all classes of SVs at a higher resolution than the standard-of-care (SOC) techniques. Recently, the technology has gained enormous traction and has been evaluated in several settings, including prenatal settings, postnatal settings, hematological neoplasms, and solid tumors, demonstrating 100% clinical concordance with traditional cytogenetic analysis.

Medical Scientists at the Medical College of Georgia (Augusta, GA, USA) performed a retrospective validation study included 92 analyses (including replicates), representing 69 unique and well-characterized samples that were received in their clinical laboratory for cytogenetic analysis with karyotyping and/or FISH testing. These were composed of 59 hematological neoplasms that included 18 adult acute myeloid leukemia (AML), 15 chronic lymphocytic leukemia (CLL), 12 myelodysplastic syndrome (MDS), six plasma cell myeloma, three lymphoma, three myeloproliferative disorders/myeloproliferative neoplasms, and two chronic myeloid leukemia. In addition, 10 morphologically normal and cytogenetically negative samples were also analyzed to evaluate true-negative/false-positive rates and calculate performance metrics.

Ultra-high-molecular-weight DNA was isolated, labeled, and processed for analysis on the Bionano Genomics Saphyr platform (Bionano Genomics Inc., San Diego, CA, USA). A frozen bone marrow aspirate aliquot (650 μL) was thawed, and cells were counted using HemoCue (HemoCue Holding AB, Ängelholm, Sweden). The DNA backbone was stained blue using DNA stain and quantified using Qubit high-sensitivity double-stranded DNA assay kits. Labeled DNA was loaded onto flow cells of Saphyr chips for optical imaging. The fluorescently labeled DNA molecules were imaged on the Saphyr instrument after the labeled DNA molecules were electrophoretically linearized in the nanochannel arrays.

The team reported that all 69 samples passed the quality control metrics, and the 59 hematological neoplasm samples achieved an average N50 (>150 kb) of 303 kb (±35), map rate of 87.5% (±7.5%), label density of 15.8/100 kb (±1.0), and average coverage of 391× (±89). In total, 86,306 SVs were identified in the 59 samples, with an average of approximately 1,462 SVs per sample. OGM was concordant in identifying 162 of 164 variants, which were reported with current SOC methods. OGM detected 59 of 60 aneuploidies, whereas one mosaic loss of chromosome Y (in a complex case of CLL) was not detected with OGM.

Of the 45 cases classified as simple, 35 had at least one clinically reported genetic aberration, whereas 10 were negative with both karyotyping and/or FISH testing. In the 35 cases with reported aberrations, OGM detected all of the previously reported variants and corrected the previously incorrect interpretations due to low resolution of karyotyping in two cases. The translocation, interstitial deletion, and duplication were detected consistently from 25% to 5% allele fraction.

The authors concluded that their study showed a 98.7% sensitivity and a 100% specificity for detecting SVs previously reported with a combination of SOC methods. The increased clinical utility of OGM in hematological malignancies has been established by multiple reports where 100% concordance was reported with multiple SOC methods. The study was published on October 17, 2022 in the Journal of Molecular Diagnostics.

Related Links:
Medical College of Georgia
Bionano Genomics
HemoCue Holding AB

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Blood Gas and Chemistry Analysis System
Edan i500
New
Benchtop Cooler
PCR-Cooler & PCR-Rack

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.