We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Assay Quickly and Reliably Detects Prostate Cancer Directly in Blood Samples

By LabMedica International staff writers
Posted on 21 Jul 2022
Print article
Image: A new assay provides fast, uncomplicated, and specific diagnosis of prostate cancer from blood samples (Photo courtesy of Pexels)
Image: A new assay provides fast, uncomplicated, and specific diagnosis of prostate cancer from blood samples (Photo courtesy of Pexels)

Early detection of prostate cancer, one of the most common types of cancer in men, is often achieved with prostate-specific antigen (PSA) tests. However, blood tests for PSA often give false positive results, resulting in unnecessary biopsies and overtreatment. Now, a newly-developed assay quickly and reliably detects prostate cancer directly in blood samples, providing a highly specific, non-invasive alternative to biopsy.

The Tango (thermophoretic AND gate operation) assay developed by researchers at the National Center for Nanoscience and Technology (Beijing, China) is based on the analysis of circulating extracellular vesicles, which are membrane-bound “nanobubbles”. These come from all cells of the body, circulate in the bloodstream, and contain numerous biomarkers typical of the cells in which they originated. Isolation and accumulation of the heterogeneous vesicles in complex samples requires complex and expensive pre-treatments. The new method combines accumulation with a logical AND gate operation in a single step for the identification of the desired tumor vesicles.

The concentration process is based on thermophoresis, the movement of particles based on a temperature gradient. The sample is placed into a specially designed microchamber that is locally heated with an IR laser. The vesicles preferentially move toward the heated spot. Polyethylene glycol is also added to form a concentration gradient, which amplifies the effect. This results in a 2800-fold accumulation around the laser spot. To identify the desired vesicles unequivocally and specifically, they must contain two proteins that occur in high concentrations in prostate tumors: prostate-specific antigen (PSMA) and epithelial cell-adhesion molecule (EpCAM). The researchers introduced two probes based on aptamers, which are short, single strands of DNA with a “programmed” 3-D structure that specifically binds to a target molecule. In this case the two targets are PSMA and EpCAM. Each of the probes has fluorescence dye.

In order to only detect vesicles that contain both tumor markers, the team developed a logical AND operation. Both of the probes have a little molecular “anchor” that specifically binds to the end of a DNA connector. If both of the target proteins are found on a vesicle membrane, both types of probe are linked by the DNA connector and the two fluorescence dyes come close enough to each other for an energy transfer. The one dye absorbs light and transfers part of the energy to the other without radiation (Förster resonance energy transfer, FRET), the second dye then emits light. The intensity of this FRET fluorescence is a measure of the number of vesicles containing both tumor markers. The Tango assay was able to identify patients with prostate cancer out of a group with inconclusive PSA results with 91% accuracy in 15 minutes. It should also be possible to develop Tango tests for other types of cancer, according to the researchers.

Related Links:
National Center for Nanoscience and Technology 

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Creatine Kinase-MB Assay
CK-MB Test
New
Ultra-Low Temperature Freezer
iUF118-GX

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.